Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere

DOI: http://dx.doi.org/10.30686/1609-9192-2020-1-97-118
Читать на русскоя языкеV.I. Bogoyavlensky
Oil and Gas Research Institute of the Russian Academy of Sciences, Moscow, The Russian Federation
Russian Mining Industry №1 / 2020 pp. 97-118

Abstract: The leading role of Russia in fossil fuels (oil, gas and coal) production in the Arctic is shown. A comprehensive analysis of fossil fuels mining challenges and peculiarities in the cryolithosphere has been carried out. The general patterns of emergencies associated with high gas saturation of the upper part of the section and gas blowouts have been revealed. The mechanisms of gas-saturated cavities leading to the formation have been substantiated, including those formed by layers gas ruptures caused by ultrahigh (more, then geostatic) pressure (UHP). Gas-saturated cavities with UHP threaten rock bumps in mines with and catastrophic blowouts of gas, coal and rocks. They can also lead to the growth of perennial frost mounds and catastrophic blowouts into the atmosphere, self-ignition and gas explosions on the surface of the Earth and water of thermokarst lakes, rivers and seas. The necessity of expanding comprehensive research in the field of natural and technogenic degassing of the Earth is shown.

Keywords: Arctic, cryolithosphere, gas hydrates, fossil fuels mining, remote sensing of the Earth, thermokarsts, gas-saturated cavities, abnormal reservoir pressure, ultrahigh pressures, degassing, gas and coal blowouts, gas explosions, methane danger, gas rupture of the layer

Acknowledgements: The work was executed following the state assignment under the topic of "Sustainable environmental management and effective development of oil and gas resources of the Arctic and Sub-Arctic Earth zones" (No. AAAA-A19-119021590079-6). The author expresses his gratitude to Academician of the Russian Academy of Sciences Yu.N. Malyshev and Corresponding Member of RAS V.N. Zakharov for valuable advice and recommendations

For citation: Bogoyavlensky V.I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gornaya promyshlennost = Russian Mining Industry. 2020;(1):97-118. (In Russ.) DOI: 10.30686/1609-9192-2020-1-97-118.


Article info

Received: 27.05.2019

Revised: 19.06.2019

Accepted: 21.07.2019


Information about the author

V.I. Bogoyavlensky – Doctor of Technical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Oil and Gas Research Institute of the Russian Academy of Sciences, Moscow, The Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Biskaborn B.K., Smith S.L., Noetzli J. et al. Permafrost is warming at a global scale. Nature Communications. 2019;(10):264. DOI: 10.1038/ s41467-018-08240-4.

2. Vorobjev B.M.; Puchkov L.A. (ed.) World Coal. Vol. 3: Euroasian coal. Moscow: Publishing house «Gornaya kniga»; 2013. (In Russ.) Available at: http://www.geokniga.org/bookfiles/geokniga-ugol-evrazii.pdf

3. Vernadskii V.I. On Gas Exchange in Earth's Crust. Izvestiya Rossiiskoi akademii nauk. Seriya 6. 1912;6(2):141–162. (In Russ.)

4. Ermakov V.I., Lebedev V.S., Nemchenko N.N. et al. Specific Features of Cenomanian Gas and Oil Deposits Formation in Western Siberian Fields. Doklady AN SSSR. 1972;206(3):713–715. (In Russ.)

5. Nemchenko N.N., Rovenskaya A.S., Shoell M. Origin of Natural Gases in Giant Gas Deposits of Northern Part of Western Siberia. Geologiya nefti i gaza. 1999;(1–2):45–56. (In Russ.)

6. Senger K., Brugmans P., Grundvåg S.-A. et al. Petroleum, coal and research drilling onshore Svalbard: a historical perspective. Norwegian Journal of Geology. 2019;99(3):1–30. DOI: 10.17850/njg99-3-1.

7. Bogoyavlensky V.I., Bogoyavlensky I.V. Peculiarities of geologic structure and development of oil and gas fields in North Sea’s region. Groningen and Ekofisk. Burenie i neft. 2014;(4):4–8. (In Russ.) Available at: https://burneft.ru/archive/issues/2014-04/1

8. Bogoyavlensky V.I. Risk of catastrophic gas blowouts from the Arctic cryolithic zone. Yamal and Taimyr craters. Burenie i neft. 2014;(9):13–18. (In Russ.) Available at: https://burneft.ru/archive/issues/2014-09/2

9. Bogoyavlensky V.I. Arctic and World Ocean: Current State, Prospects and Challenges of Hydrocarbon Resources Development. Moscow: VEO; 2014. (In Russ.)

10. Bogoyavlensky V.I. Emergency Situations in Developing Oil and Gas Resources in the Arctic and the Ocean. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2014;(4):48–59. (In Russ.) Available at: http://arctica-ac.ru/docs/journals/16/chrezvychaynyesituaciipri-osvoenii-resursov-nefti-i-gaza-v-arktike-i-mirovom-o.pdf

11. Bogoyavlensky V.I. Oil and gas emissions on land and offshore areas of the arctic and World ocean. Burenie i neft. 2015;(6):4–10. (In Russ.) Available at: https://burneft.ru/archive/issues/2015-06/4

12. Bogoyavlensky V.I., Garagash I.A. Justification of generation of gas emission craters in the Arctic by mathematical modeling. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2015;(3):12–17. (In Russ.) Available at: http://arctica-ac.ru/docs/journals/19/obosnovanie-processa-obrazovaniya-kraterov-gazovogo-vybrosa-v-arktike-matematich.pdf

13. Bogoyavlensky V.I., Kerimov V.Yu., Olkhovskaya O.O. Dangerous gas-saturated objects in the world ocean: the Sea of Okhotsk. Neftyanoe khozyaistvo. 2016;(6):43–47. (In Russ.)

14. Bogoyavlenskiy V.I., Bogoyavlenskiy I.V., Kargina T.N. Peculiarities of geologic structure and development of wilmington oil field in californiapeculiarities of geologic structure and development of Wilmington oil field in California Burenie i neft. 2016;(9):22–27. (In Russ.) Available at: https://burneft.ru/archive/issues/2016-09/22

15. Bogoyavlensky V.I., Perekalin S.O., Boichuk V.M., Bogoyavlensky I.V., Kargina T.N. Kumzhinskoye gas condensate field disaster: reasons, results and ways of eliminating the consequences. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2017;(1):32–46. (In Russ.) Available at: http://arctica-ac.ru/docs/journals/25/katastrofa-na-kumjinskom-gazokondensatnom-mestorojdenii-prichinyrezultatyputi-.pdf

16. Bogoyavlensky V.I., Bogoyavlensky I.V., Kargina T.N. Catastrophic mud volcano eruption in Indonesia Burenie i neft. 2017;(11):2–11. (In Russ.) Available at: https://burneft.ru/archive/issues/2017-11/18

17. Bogoyavlensky V.I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2018;(1):48–55. (In Russ.) DOI: 10.25283/2223-4594-2018-1-48-55.

18. Bogoyavlensky V.I. Permafrost does not Forgive Mistakes. Redkie zemli. 2018;(1):6–21. (In Russ.)

19. Bogoyavlensky V.I., Bogoyavlensky I.V. Problems of the Netherlands gas production: record-breaking seismic activity at the groningen field. Gazovaya promyshlennost' = Gas Industry. 2018;(4):124–133. (In Russ.) Available at: http://neftegas.info/gasindustry/-04-2018/problemy-gazovoy-otrasli-niderlandov-rekordnyy-rost-seysmicheskoy-aktivnosti-na-mestorozhdenii-groni/?sphrase_id=36151

20. Bogoyavlensky V.I., Kazanin G.S., Kishankov A.V. Dangerous gas-saturated objects in the World ocean: the Laptev sea. Burenie i neft. 2018;(5):20–28. (In Russ.) Available at: https://burneft.ru/archive/issues/2018-05/20

21. Bogoyavlensky V.I., Sizov O.S., Mazharov A.V., Bogoyavlensky I.V., Nikonov R.A., Kishankov A.V., Kargina T.N. Earth decontamination in the Arctic: remote and field studies of the Seyakha accident gas emission on the Yamal Peninsula. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2019;(1):88–105. 88-105. (In Russ.) DOI: 10.25283/2223-4594-2019-1-88-105.

22. Bogoyavlensky V.I., Sizov O.S., Bogoyavlensky I.V., Nikonov R.A., Kargina T.N. Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2019;(4):52–68. (In Russ.) DOI: 10.25283/2223-4594-2019-4-52-68.

23. Laverov N.P., Bogoyavlensky V.I., Bogoyavlensky I.V. Seismic Exploration, Offshore Oil and Gas Fields Development of the Arctic Western Region. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2011;(3):16–27. (In Russ.) Available at: http://www.arctica-ac.ru/docs/journals/3/seysmorazvedka-i-osvoenie-morskih-mestorojdeniy-nefti-i-gaza-arktiki-zapadnogo-p.pdf

24. Laverov N.P., Bogoyavlensky V.I., Bogoyavlensky I.V. Fundamental aspects of the rational development of oil and gas resources of the Arctic and Russian shelf: strategy, prospects and challenges. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy. 2016;(2):4– 13. (In Russ.) Available at: http://www.arctica-ac.ru/docs/journals/22/fundamentalnye-aspekty-racionalnogo-osvoeniya-resursovneftii-gaza-arktiki-i-sh.pdf

25. Bogoyavlensky V. Gas Blowouts on the Yamal and Gydan Peninsulas. GeoExPro. 2015;12(5):74–78. Available at: https://www.geoexpro.com/articles/2015/12/gas-blowouts-on-the-yamal-and-gydan-peninsulas

26. Bogoyavlensky V.I., Kazanin G.S., Kishankov A.V. Gas Saturation of Shallow Deposits of the Arctic and Subarctic Seas. In: Conference Proceedings, Marine Technologies 2019, Apr 2019. Gelendzhik: European Association of Geoscientists & Engineers; 2019, pp. 1–7. DOI: 10.3997/2214-4609.201901808.

27. Bogoyavlensky V.I. Innovative Technologies and Results of Studying Processes of Natural and Man-Made Degassing of the Earth in the Lithosphere-Cryosphere-Hydrosphere-Atmosphere System. In: Conference Proceedings, Third International Conference on Geology of the Caspian Sea and Adjacent Areas, Oct 2019. Baku: European Association of Geoscientists & Engineers; 2019. DOI: 10.3997/22144609.201952015.

28. Bogoyavlensky V., Bogoyavlensky I., Budagova T. Ecological safety and rational nature using in the Arctic and World ocean. Burenie i neft. 2013;(12):10–16. (In Russ.) Available at: https://burneft.ru/archive/issues/2013-12/2

29. Judd A., Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology, and the Marine Environment. Cambridge; 2007.

30. Leibman M.O., Plekhanov A.V. Yamal Gas Emission Funnel: Preliminary Survey Results. Kholodok. 2014;(2)9–15. (In Russ.)

31. Kotlyakov V.M., Komarova A.I. Elsevier’s dictionary of geography. Elsevier; 2007.

32. Alekseev V.R., Volkov N.V., Vtyurin B.I., Vtyurina E.A., Grosvald M.G., Donchenko R.V., Dyunin A.K., Kanaev L.A., Kotlyakov V.M., Krenke A.N., Losev K.S., Perov V.F., Tsurikov V.L. Glaciological Dictionary. Leningrad: Gidrometeoizdat; 1984. (In Russ.)

33. Belova N.G. Massive ice beds of the south-western coast of the Kara Sea. Moscow: MAKS Press; 2014. (In Russ.)

34. Anikeev A.V. Sinkholes and Subsidence Funnels in Karst Areas: Mechanisms of Formation, Forecasting and Risk Assessment. Moscow: Peoples' Friendship University of Russia; 2017. (In Russ.) Available at: http://www.geokniga.org/bookfiles/geokniga-provaly-i-voronkiosedaniyav-karstovyh-rayonah-mehanizmy-obrazovaniya-progno.pdf

35. Olenchenko V.V., Gagarin L.A., Khristoforov I.I., Kolesnikov A.B., Efremov V.S. The Structure of a Site with Thermo-Suffosion Processes within Bestyakh Terrace of the Lena River, According to Geophysical Data. Kriosfera Zemli. 2017;21(5):16–26. (In Russ.) DOI: 10.21782/ KZ1560-7496-2017-5(16-26).

36. Xuejun Q., Wei C., Dijin W., Zhaosheng N., Zhengsong C., Jie L., Xiaoqiang W., Yu L., W Tan., Guangcai F. Crustal Deformation in the Hutubi Underground Gas Storage Site in China Observed by GPS and InSAR Measurements. Seismological Research Letters. 2018;89(4):1467– 1477. DOI: 10.1785/0220170221.

37. Valyaev B.M. Hydrocarbon Degassing of Earth, Geotectonics and Origin of Oil and Gas (Recognition and Development of P.N. Kropotkin's ideas). In: Dmitrievskii A.N., Valyaev B.M. (eds) Degassing of the Earth and Genesis of Oil and Gas Fields (to the 100th Anniversary of Academician P.N. Kropotkin). Moscow: GEOS; 2011, pp. 10–32. (In Russ.)

38. Ahlbrandt T.S., Charpentier R.R., Klett T.R., Schmoker J.W., Schenk C.J., Ulmishek G.F. Global Resource Estimates from Total Petroleum Systems. Tulsa: AAPG; 2005. 340 p.

39. Zagorovskii Yu.A. Role of Fluid Dynamic Processes in the Formation and Distribution of Hydrocarbon Deposits in the North of Western Siberia: abstract of a thesis for the Degree of Candidate of Science in Geology and Mineralogy. Tyumen; 2017. (In Russ.)

40. Kholodov V.N. On Nature of Mud Volcanoes. Priroda. 2002;(11):47–58. (In Russ.)

41. Kholodov V.N. Thermobaric depth settings of sedimentary rock basins and their fluid dynamics: Сommunication 2. Superhigh pressures and mud volcanoes. Litologiya i poleznye iskopaemye. 2019;(1):44–59. (In Russ.) DOI: 10.31857/S0024-497X2019144-59.

42. Fenin G.I. Anomalous reservoir pressure in the zones of hydrocarbon accumulation oil and gas bearing basins. Neftegazovaya geologiya. Teoriya i praktika. 2010;5(4):1–20. (In Russ.) Available at: http://www.ngtp.ru/rub/4/46_2010.pdf

43. Fertl W.H. Abnormal formation pressure: Implications to Exploration, Drilling, and Production of Oil and Gas Resources. Amsterdam: Elsevier; 1976.

44. Guliyev I.S., Huseynov D.A. Relics of mud volcanoes in the sedimentary cover of the South Caspian Basin. Lithology and Mineral Resources. 2015;50(4):311–321. DOI: 10.1134/S0024490215040033.

45. Aliyev Ad.A. Mud volcanoes of the Caspian sea. Geologiya i poleznye iskopaemye mirovogo okeana = Geology and Mineral Resources of World Ocean. 2014;(1):33–44. (In Russ.) Available at: http://gpimo.nas.gov.ua/sites/default/files/33-44.pdf

46. Kulakov I.Yu. A Gas-Inflated Volcano. Nauka iz pervykh ruk = Science First Hand. 2014;(5):10–13. (In Russ.) Available at: https://scfh.ru/papers/vulkan-nadutyy-gazom/

47. Utkin I.S., Melnik O.E. Dynamics of Explosive Volcano Degassing. Proceedings of the Steklov Institute of Mathematics. 2018;300(1):182– 188. DOI: 10.1134/S0081543818010157.

48. Shnyukov E.F., Netrebskaya E.Ya. On the deep structure of the eruptive canal of mud volcanoes. Geologiya i poleznye iskopaemye mirovogo okeana = Geology and Mineral Resources of World Ocean. 2014;(1):33–44. (In Russ.) DOI: 10.15407/gpimo2016.04.054.

49. Ozerov A. Yu. The Mechanism of Basaltic Explosions: Experimental Modeling. Vulkanologia i sejsmologia. 2010;(5):3–19. (In Russ.) Available at: http://www.ozerov.ru/papers/2010_Ozerov_Vulcanology-Seismology.pdf

50. Isaev V.P. The Patomian Phenomenon. Irkutsk: Irkutsk State University; 2014. (In Russ.)

51. Bembel R.M., Bembel' S.R., Megerya V.M. Active Manifestations of Geosolithic Degassing of the Earth in Seismological, Geophysical and Geochemical Materials. Seismicheskie tekhnologii. 2010;7(4):69–76. (In Russ.) Available at: ts.sbras.ru/ru/articles/10_4_069.pdf

52. Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J., Brodsky, E. E. The 2016 Mw 5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters. 2017;472:50–61. DOI: 10.1016/j.epsl.2017.05.011.

53. Thatje S., Gerdes D., Rachor E. A seafloor crater in the German Bight and its effects on the benthos. Helgol Mar Res. 1999;53:36–44. Available at: https://link.springer.com/content/pdf/10.1007%2FPL00012136.pdf

54. Bondarev V.N., Rokos S.I., Kostin D.A., Dlugach A.G., Polyakova N.A. Underpermafrost accumulations of gas in the upper part of the sedimentary cover of the Pechora sea. Geologiya i geofizika = Russian Geology and Geophysics. 2002;43(7):587–598. (In Russ.) Available at: http://evgengusev.narod.ru/shkarubo/bondarev-2002.html

55. Mel'nikov V.P., Spesivtsev V.I., Kulikov V.N. On Jet Degassing of Hydrocarbons as a Source of New Ice Formations on the Pechora Sea Shelf. In: Mel'nikov E. S. (ed.) Results of Fundamental Research into the Earth Cryosphere in the Arctic and Subarctic: Proceedings of the International Conference, Pushchino, April 23-26, 1996. Novosibirsk: Nauka; 1997, pp. 259–269. (In Russ.)

56. Tokarev V.D., Lidov A.P. The Age of Ervier. Moscow: Siburgeo; 2009. (In Russ.)

57. Yakushev V.S. Natural Gas and Gas Hydrates in Cryolithic Zone. Moscow: VNIIgaz; 2009. (In Russ.)

58. Khoshtariya V.N. Natural Gas and Gas Hydrates in the Cryolithic Zone. Experience and Methodology of OOO 'Gazprom Geologorazvedka' in Studying the Upper (Near-Bottom) Part of the Section to Prevent Risks in Drilling Offshore Wells: [Presentation]. (In Russ.) Available at: http://www.rao-offshore.ru/netcat_files/userfiles/RAO-2017/8/Hoshtariya.pdf

59. Raikevich S.I. Ensuring the Reliability and High Productivity of Gas Wells. Moscow: OOO «IRTs Gazprom»; 2007. (In Russ.)

60. Samsonov R.O., Kazak A.S., Bashkin V.N., Lesnykh V.V. System Analysis of Geoecological Risks in Gas Industry. Moscow: Nauchnyi mir; 2007. (In Russ.)

61. Avetov N.R., Krasnova E.A., Yakushev V.S. Certain peculiarities of wellhead gas shows from the interval of the cryolithic zone in the territory of the Yamburg oil and gas condensate field. Gazovaya promyshlennost' = Gas Industry. 2017;(8):44–47. (In Russ.) Available at: http://neftegas.info/gasindustry/-8-2017/nekotorye-osobennosti-priustevykh-gazoproyavleniy-iz-intervala-kriolitozony-na-territoriiyamburgsko/

62. Maksimovich G.A., Bykov V.N. Cave Cavities and their Role in the Structure of Collectors of Oil and Gas. In: Peshchery (Caves). Perm: Gorkii University in Perm; 1972, iss. 12-13, pp. 146–155. (In Russ.) Available at: http://www.geokniga.org/bookfiles/geokniga-v1213.pdf

63. Laptev B.V. History of Accidents in Salt Deposit Development. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2011;(12):41–46. (In Russ.) Available at: https://www.btpnadzor.ru/archive/istoriografiya-avariy-pri-razrabotke-solyanykhmestorozhdeniy

64. Litvinov A.R., Kolikov K.S., Ishkhneli O.G. Accident and traumatism at coal industry enterprises in 2010–2015. Vestnik Nauchnogo tsentra po bezopasnosti rabot v ugol'noi promyshlennosti. 2017;(2):6–17. (In Russ.) Available at: http://indsafe.ru/images/publ/2_2017aatac.pdf

65. Pashkin E.M. Generalization of Experience in Engineering and Geological Surveys for Construction of Large-Size Tunnels. Inzhenernaya geologiya. 1991;(2):3–27. (In Russ.)

66. Chow D. Why Do Coal Mines Explode? Livescience. April 6, 2010. Available at: https://www.livescience.com/6298-coal-mines-explode.html

67. Liu S., Wang T., Zhang T., Zhang J. Research on simulation of human body electrostatic discharge on detonating gas in coal mines. Journal of Physics: Conference Series. 2013;418(conference 1):012052. DOI: 10.1088/1742-6596/418/1/012052.

68. Svendsen J.I., Alexanderson H., Astakhov V.I. et al. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews. 2004;23(11–13):1229–1271. DOI: 10.1016/j.quascirev.2003.12.008.

69. Gresov A.I., Obzhirov A.I., Yatzuk A.V. Geostructural regularities of the distributions of permafrost in gas and coal-bearing basins in the North-East of Russia. Kriosfera Zemli. 2014;18(1):3–11. (In Russ.) Available at: http://www.izdatgeo.ru/pdf/krio/2014-1/3.pdf

70. Skritskii V.A., Surkov A.V., Sobolev V.V. Reasons of origination and development of gas-dynamic phenomena in coal mines. Vestnik Nauchnogo tsentra po bezopasnosti rabot v ugol'noi promyshlennost. 2013;(2):102–108. (In Russ.)

71. Reymert P.K. Ny-Ålesund – the world’s northernmost mining town. Longyearbyen; 2016. Available at: https://www.sysselmannen.no/contentassets/225d990d15ff47a58050a1aa4948ed7b/ ny_aalesund_hefte_eng.pdf

72. Zakharov V.N. Effect of Anthropogenic Geodynamic Processes on Stability of the Marginal Rock Massive. MIAB. Mining Inf. Anal. Bull. 2011;(S1):159–168. (In Russ.)

73. Malyshev Yu.N., Airuni A.T. Comprehensive gas drainage of underground coal mines. Moscow: Academy of Mining; 1999. (In Russ.)

74. Malyshev Yu.N., Trubetskoi K.N., Airuni A.T. Fundamental and applied methods for the solution of coal-bed methane problems. Moscow: Academy of Mining; 2000. (In Russ.)

75. Makogon Yu.F. Gas Hydrates. History of Studies and Prospects of Development. Geologiya i poleznye iskopaemye mirovogo okeana = Geology and Mineral Resources of World Ocean. 2010;(2):5–21. (In Russ.) Available at: http://dspace.nbuv.gov.ua/bitstream/ handle/123456789/44846/01-makogon.pdf?sequence=1

76. Smirnov V.G., Dyrdin V.V., Ismagilov Z.R., Kim T.L., Manakov A.Yu. On the influence of the forms of the connection of methane with the coal matrix on the gas dynamic phenomena arising in the underground development of coal seams. Vestnik Nauchnogo tsentra po bezopasnosti rabot v ugol'noi promyshlennost. 2017;(1):34–41. (In Russ.)