Developing a technology of driving and supporting mine workings in tectonically weakened rock zones
R.Sh. Nasyrov1, A.V. Tretyak1, S.S. Neugomonov2, A.M. Mazhitov2
1 Donskoy Mining and Processing Plant (branch of TNC KAZCHROME JSC), Khromtau, Republic of Kazakhstan
2 Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation
Russian Mining Industry №3 / 2024 стр. 126-130
Abstract: Presence of tectonically weakened and disturbed zones leads to decreased underground excavation rates and reduced safety of the mining operations. As a rule, such zones are bounded by vertical and subvertical disturbances that contribute to weakening and loss of stability of the rock and ore mass. Disturbance of the natural state, in particular driving of a mine workings, provokes irreversible deformations due to redistribution and concentration of stresses within the boundary rock mass, which is more rigid. At the same time no significant stresses are formed within the rock mass of the tectonic zone due to its caving. Therefore, when developing solutions for driving and supporting mining excavations within the tectonic zone, the rock mass should be considered as weakened and highly fragmented with unbonded structural blocks. The particle-size distribution within the rock mass of the tectonic zone varies in a wide range of sized from several to tens of centimetres. In this context, the mining and rock reinforcement technology presented in this paper accounts for the possible free caving of the non-bonded host rock mass made up of small-sized blocks. The paper discusses physical and mechanical characteristics and the stress-and-strain state of the rock mass within the tectonically weakened zone and the boundary host rocks, and a technology of driving and supporting underground mine workings is proposed on this basis.
Keywords: tectonically weakened zone, driving of mine workings, rock mass stability, combined support, multi-tier support
For citation: Nasyrov R.Sh., Tretyak A.V., Neugomonov S.S., Mazhitov A.M. Developing a technology of driving and supporting mine workings in tectonically weakened rock zones. Russian Mining Industry. 2024;(3):126–130. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-126-130
Article info
Received: 03.04.2024
Revised: 16.05.2024
Accepted: 18.05.2024
Information about the authors
Ravil Sh. Nasyrov – Head of the ‘10th Anniversary of Kazakhstan's independence’ mine, Donskoy Mining and Processing Plant (branch of TNC KAZCHROME JSC), Khromtau, Republic of Kazakhstan
Anatoly V. Tretyak – Head of Research and Engineering Centre, Donskoy Mining and Processing Plant (branch of TNC KAZCHROME JSC), Khromtau, Republic of Kazakhstan
Sergey S. Neugomonov – Cand. Sci. (Eng.), Associate Professor, Department of Mineral Deposits Development, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation
Artur M. Mazhitov – Dr. Sci. (Eng.), Professor, Department of Mineral Deposits Development, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Алексеев А.В., Иовлев Г.А. Влияние неоднородности массива на устойчивость проходческого забоя при строительстве метрополитена. Международный научно-исследовательский журнал. 2017;(8-3):6–14. https://doi.org/10.23670/IRJ.2017.62.007 Alekseev A.V.1, Iovlev G.A. Influence of the inhomogeneity of the solid mass on the stability of the mine working during the construction of the subway. Mezhdunarodnyi Nauchno-Issledovatelskii Zhurnal. 2017;(8-3):6–14. (In Russ.) https://doi.org/10.23670/IRJ.2017.62.007
2. Криницын Р.В. Напряженно-деформированное состояние массива горных пород при отработке месторождений Урала. Горная промышленность. 2022;(5):79–82. https://doi.org/10.30686/1609-9192-2022-5-79-82 Krinitsyn R.V. Stress-deformed state of the rock mass in the development of deposits in the Urals. Russian Mining Industry. 2022;(5):79–82. (In Russ.) https://doi.org/10.30686/1609-9192-2022-5-79-82
3. Кузьмин С.В., Шнайдер И.В., Кыштымов И.В. Выявление опасных зон при проходке подготовительных выработок в сложных горно-геологических условиях. Горный журнал. 2024;(1):45–49. https://doi.org/10.17580/gzh.2024.01.07 Kuzmin S.V., Shnaider I.V., Kyshtymov I.V. Detection of hazardous zones in development headings in difficult geological conditions. Gornyi Zhurnal. 2024;(1):45–49. (In Russ.) https://doi.org/10.17580/gzh.2024.01.07
4. Левин Л.Ю., Семин М.А., Паршаков О.С. Совершенствование методов прогнозирования состояния ледопородного ограждения строящихся шахтных стволов с использованием распределенных измерений температуры в контрольных скважинах. Записки Горного института. 2019;237:268–274. https://doi.org/10.31897/PMI.2019.3.274 Levin L.Y., Semin M.A., Parshakov O.S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells. Journal of Mining Institute. 2019;237:268–274. https://doi.org/10.31897/PMI.2019.3.274
5. Арыстан И.Д., Абеуов Е.А., Абдрашев Р.М., Матаев А.К. Крепление горизонтальных горных выработок в условиях шахт Донского ГОКа. В кн.: Гвоздкова Т.Н. (ред.) Современные тенденции и инновации в науке и производстве: сб. материалов 8-й междунар. науч.-практ. Конф., г. Междуреченск, 3–4 апр. 2019 г. Междуреченск: Кузбасский государственный технический университет имени Т.Ф. Горбачева; 2019. С. 126.1–126.7.
6. Мажитов А.М., Пыталев И.А., Доможиров Д.В. Боровиков Е.В., Струков И.Н. Метод одностадийной проходки восстающего при одновременном формировании отрезного компенсационного пространства. Рациональное освоение недр. 2022;(5):46–51. Mazhitov A.M., Pytalev I.A., Domozhirov D.V., Borovikov E.V., Strukov I.N. Single-stage rising method with the simultaneous formation of a cutoff compensation space. Ratsionalnoe Osvoenie Nedr. 2022;(5):46–51. (In Russ.)
7. Лисковец А.С., Тациенко В.П., Мешков А.А. Направления развития и совершенствования тампонажной крепи. Горная промышленность. 2020;(2):88–93. https://doi.org/10.30686/1609-9192-2020-2-88-93 Liskovets A.S., Tatsienko V.Р., Meshkov A.А. Directions of development and improvement of grouting support. Russian Mining Industry. 2020;(2):88-93. (In Russ.) https://doi.org/10.30686/1609-9192-2020-2-88-93
8. Дашко Р.Э., Каган А.А. Механика грунтов в инженерно-геологической практике. М.: Недра; 1977. 237 с.
9. Proctor R.V., White T.L. Rock tunneling with steel supports with an introduction to tunnel geology. Youngstown, Ohlo; 1946. 271 p.
10. Овсюченко А.Н., Трофименко С.В., Мараханов А.В., Карасев П.С., Рогожин Е.А., Имаев В.С. и др. Детальные геолого-геофизические исследования зон активных разломов и сейсмическая опасность Южно-Якутского региона. Тихоокеанская геология. 2009;28(4):55–74. Ovsyuchenko A.N., Marakhanov A.V., Karasev P.S., Rogozhin E.A., Trofimenko S.V., Nikitin V.M. et al. Detailed geologicalgeophysical studies of active fault zones and the seismic hazard in the South Yakutia region. Russian Journal of Pacific Geology. 2009;3(4):356–373. (In Russ.) https://doi.org/10.1134/S1819714009040046
11. Еременко В.А., Гахова Л.Н., Лушников В.Н., Есина Е.Н., Семенякин Е.Н. Формирование зон концентрации высоких напряжений при разработке месторождений с гравитационно-тектоническим исходным напряженным состоянием массива горных пород. Горный информационно-аналитический бюллетень. 2013;(9):5–16. Eremenko V.A., Gakhova L.N., Louchnikov V.N., Esina E.N., Semenyakin E.N. Initiation of higher stress zones in mining under gravitational tectonic stresses of the intact rock mass. Mining Informational and Analytical Bulletin. 2013;(9):5–16. (In Russ.)
12. Козырев А.А., Семенова И.Э., Аветисян И.М. Геомеханическое обоснование выемки запасов глубоких горизонтов Кукисвумчоррского месторождения. Горный информационно-аналитический бюллетень. 2017;(4):143–155. Kozyrev A.A., Semenova I.E., Avetisyan I.M. Geomechanical substantiation of deep-level mining at Kukisvumchorr deposit. Mining Informational and Analytical Bulletin. 2017;(4):143–155. (In Russ.)