Enhancement of reagent regimes for complex ores flotation

DOI: https://doi.org/10.30686/1609-9192-2024-3-100-104

Читать на русскоя языкеZ.Y. Kyaw1, 2, A.A. Semikin2, D.G. Sandakova2 , A.A. Dekhtyarenko2, V.A. Yakimov3
1 Science and Technological Research Center Pyin Oo Lwin, Mandalay, Myanmar
2 National University of Science and Technology MISIS, Moscow, Russian Federation
3 State University “Dubna”, Moscow region, Dmitrov, Russian Federation

Russian Mining Industry №3 / 2024 стр. 100-104

Abstract: Pyrite copper-zinc (sulfide) and polymetallic ores in Russia are complex and rebellious mineral raw materials. The main processing technology for such ores is flotation. Enhancement of the flotation technology for such mineral raw materials is currently performed in several directions. The practice of copper-zinc ore processing proves that obtaining highquality zinc and pyrite concentrates is impossible without the use of various modifiers in the sphalerite and pyrite flotation process. Such reagents are copper (II), zinc and iron (II) sulfates in the alkali-calcic medium. Therefore, research was carried out to study floatation properties of sphalerite and pyrite in the alkali-calcic medium with addition of one of the indicated sulfates to the mineral flotation process. The effect of each of the sulfates of copper (II), zinc and iron (II) on the flotation properties of sphalerite and pyrite was studied during flotation of the mineral with butyl xanthate and dithiophosphate at pH equal to 8, 10, and 12. The aim of this work was to study the effect of the sulfhydryl collectors in presence of copper sulfates, zinc and iron for flotation of sphalerite and pyrite with the grain-size class of 0.074 + 0.044 mm from one of the Russian deposits.

Keywords: flotation, sphalerite, ferrous sulfate, potassium butyl xanthate, sodium butyldithiophosphate, thermodynamics, Gibbs thermodynamic potential, electrochemical potential, mineral electrode

For citation: Kyaw Z.Y., Semikin A.A., Sandakova D.G., Dekhtyarenko A.A., Yakimov V.A. Enhancement of reagent regimes for complex ores flotation. Russian Mining Industry. 2024;(3):100–104. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-100-104


Article info

Received: 05.04.2024

Revised: 13.05.2024

Accepted: 19.05.2024


Information about the authors

Kyaw Zay Ya – Сand. Sci. (Eng.), Mineral Enrichment Laboratory, Science and Technological Research Center Pyin Oo Lwin, Mandalay, Myanmar; Department of Enrichment and Processing of Mineral Resources and Technogenic Raw Materials; College of Mining, National University of Science and Technology MISIS, Moscow, Russian Federation

Andrey A. Semikin – Postgraduate Student, Department of Enrichment and Processing of Mineral Resources and Technogenic Raw Materials, College of Mining, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Darima G. Sandakova – Postgraduate Student, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Andrei A. Dekhtyarenko – Postgraduate Student, Department of Mining Equipment, Transport and Mechanical Engineering, College of Mining, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Victor A. Yakimov – Student, Dmitrov Institute of Continuing Education, State University “Dubna”, Moscow region, Dmitrov, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Каунг П.А., Семикин А.А., Хайрутдинов А.М., Дехтяренко А.А. Вовлечение техногенных отходов в переработку – парадигма ресурсного обеспечения устойчивого развития. Устойчивое развитие горных территорий. 2023;15(2):385–397. https://doi.org/10.21177/1998-4502-2023-15-2-385-397 Kaung P.A., Semikin A.A., Khayrutdinov A.M., Dekhtyarenko A.A. Recycling of industrial waste is a paradigm of resource provision for sustainable development. Sustainable Development of Mountain Territories. 2023;15(2):385–397. (In Russ.) https://doi.org/10.21177/1998-4502-2023-15-2-385-397

2. Ковальский Е.Р., Конгар-Сюрюн Ч.Б., Петров Д.Н. Проблемы и перспективы внедрения многостадийной выемки руды при отработке запасов калийных месторождений. Устойчивое развитие горных территорий. 2023;15(2):349–364. https://doi.org/10.21177/1998-4502-2023-15-2-349-364 Kovalski E.R., Kongar-Syuryun C.B., Petrov D.N. Challenges and prospects for several-stage stoping in potash minining. Sustainable Development of Mountain Territories. 2023;15(2):349–364. (In Russ.) https://doi.org/10.21177/1998-4502-2023-15-2-349-364

3. Khoreshok A., Kantovich L., Kuznetsov V., Preis E., Kuziev D. The results of cutting disks testing for rock destruction. E3S Web Of Conferences. 2017;15:03004. https://doi.org/10.1051/E3SCONF/20171503004

4. Клементьева И.Н., Кузиев Д.А. Современное состояние и перспективы развития конструкций карьерных комбайнов для безвзрывной послойной выемки прочных пород. Горный информационно-аналитический бюллетень. 2019;(2):123–128. https://doi.org/10.25018/0236-1493-2019-02-0-123-128 Klement’eva, I.N., Kuziev, D.A. Actual status and prospects for future development of surface miners, designed for for blastless lit-by-lit excavation of solid rock. Mining Informational and Analytical Bulletin. 2019;2019(2):123–128. (In Russ.) https://doi.org/10.25018/0236-1493-2019-02-0-123-128

5. Павленко М.В., Барнов Н.Г., Кузиев Д.А., Кенжабаев К.Н., Монзоев М.В. Вибрационное воздействие через скважины и технология дегазационной подготовки низкопроницаемого угольного пласта. Уголь. 2020;(1):3-40. https://doi.org/10.18796/041-5790-2020-1-3-40 Pavlenko M.V., Barnov N.G., Kuziev D.A., Kenzhabaev K.N., Monzoev M.V. Vibration impact through wells and the technology of degassing of the preparation of lov-permeability coal seam. Ugol’. 2020;(1):3–40. (In Russ.) https://doi.org/10.18796/041-5790-2020-1-3-40

6. Конгар-Сюрюн Ч.Б., Ковальский Е.Р. Твердеющие закладочные смеси на калийных рудниках: перспективные материалы, регулирующие напряжённо-деформированное состояние массива. Геология и геофизика Юга России. 2023;13(4):177187. https://doi.org/10.46698/VNC.2023.34.99.014 Kongar-Syuryun C.B., Kovalski E.R. Hardening backfill at potash mines: promising materials regulating stress-strain behavior of rock mass. Geologiya I Geofizika Yuga Rossii. 2023;13(4):177-187. (In Russ) https://doi.org/10.46698/VNC.2023.34.99.014

7. Хайрутдинов М.М., Каунг П.А., Чжо З.Я., Тюляева Ю.С. Обеспечение экологической безопасности при внедрении ресурсовозобновляемых технологий. Безопасность труда в промышленности. 2022;5:57–62. https://doi.org/10.24000/0409-2961-2022-5-57-62 Khayrutdinov M.M., Kaung P.A., Chzho Z.Ya., Tyulyaeva Y.S. Ensuring Environmental Safety in the Implementation of the Resource-renewable Technologies. Bezopasnost' Truda v Promyshlennosti. 2022;2022(5):57–62. (In Russ) https://doi.org/10.24000/0409-2961-2022-5-57-62

8. Лигоцкий Д.Н., Аргимбаева К.В. Технология посекционного формирования техногенного месторождения с последующей отработкой гидравлическим экскаватором «обратная лопата». Устойчивое развитие горных территорий. 2024;16(1):111–121. https://doi.org/10.21177/1998-4502-2024-16-1-111-121 Ligotsky D.N., Argimbaeva K.V. The sectional formation technology of an anthropogenic deposit with its subsequent mining using a hydraulic pull shovel. Sustainable Development of Mountain Territories. 2024;16(1):111–121. (In Russ.) https://doi.org/10.21177/1998-4502-2024-16-1-111-121

9. Gugunskiy D., Chernykh I., Khairutdinov A. Legal Models for Activities on the Exploration and Utilization of Space Resources: Towards the “Space-2030” Agenda. Advances in Intelligent Systems and Computing. 2020;1100 AISC:657–664. https://doi.org/10.1007/978-3-030-39319-9_73

10. Куренков Д.С., Федоров Г.Б., Дудченко О.Л. Физические основы применения акустических колебаний для интенсификации растворения каменной соли. Горный информационно-аналитический бюллетень. 2021;(5):45–53. https://doi.org/10.25018/0236_1493_2021_5_0_45 Kurenkov D.S., Fedorov G.B., Dudchenko O.L. Physics of application of acoustic vibrations in stimulation of dissolution of rock salt. Mining Informational and Analytical Bulletin. 2021;(5):45–53. (In Russ) https://doi.org/10.25018/0236_1493_2021_5_0_45

11. Mikolas M., Mikusinec J., Abrahamovsky J., Dibdiakova, J., Tyulyaeva Y., Srek J. Activities of a Mine Surveyor and a Geologist at Design Bases in a Limestone Quarry. IOP Conference Series: Earth and Environmental Science. 2021;906(1):012073. https://doi.org/10.1088/1755-1315/906/1/012073

12. Ишейский В.А., Рядинский Д.Э., Магомедов Г.С. Повышение качества дробления горных пород взрывом за счет учета структурных особенностей взрываемого массива. Горный информационно-аналитический бюллетень. 2023;(9-1):79– 95. https://doi.org/10.25018/0236_1493_2023_91_0_79 Isheisky V.A., Ryadinskii D.E., Magomedov G.S. Increasing the quality of fragmentation of blasting rock mass based on accounting for structural features of massif in the blast design. Mining Informational and Analytical Bulletin. 2023;(9):79-95. (In Russ) https://doi.org/10.25018/0236_1493_2023_91_0_79

13. Bacova D., Khairutdinov A.M., Gago F. Cosmic Geodesy Contribution to Geodynamics Monitoring. IOP Conference Series: Earth and Environmental Science. 2021;906(1):012074. https://doi.org/10.1088/1755-1315/906/1/012074

14. Голик В.И., Гашимова З.А., Лискова М.Ю., Конгар-Сюрюн Ч.Б. К проблеме минимизации объемов мобильной пыли при разработке карьеров. Безопасность труда в промышленности. 2021;(11):28-33. https://doi.org/10.24000/0409-2961-2021-11-28-33 Golik V.I., Gashimova Z.A., Liskova M.Yu., Kongar-Syuryun C.B. To the problem of minimizing the volume of mobile dust in the development of pits. Bezopasnost' Truda v Promyshlennosti. 2021;2021(11):28-33. (In Russ) https://doi.org/10.24000/0409-2961-2021-11-28-33

15. Yamilev M.Z., Masagutov A.M., Nikolaev A.К., Pshenin V.V., Zaripova N.A., Plotnikova K.I. Modified equations for hydraulic calculation of thermally insulated oil pipelines for the case of a power-law fluid. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2021;11(4):388-395. https://doi.org/10.28999/2541-9595-2021-11-4-388-395

16. Репин С.В., Афанасьев А.С., Добромиров В.Н., Барсуков В.О. Инновационный способ утилизации отходов монолитных строительных конструкций. Устойчивое развитие горных территорий. 2023;15(3):771–783. https://doi.org/10.21177/1998-4502-2023-15-3-771-783 Repin S.V., Afanasyev A.S., Dobromirov V.N., Barsukov V.O. Innovative method for disposal of waste of monolithic building structures. Sustainable Development of Mountain Territories. 2023;15(3):771-783. (In Russ) https://doi.org/10.21177/1998-4502-2023-15-3-771-783

17. Korshak A.A., Vykhodtseva N.A., Gaysin M.T., Korshak A.A., Pshenin V.V. Influence of operating factors on the performance of oil vapor recovery adsorption plants. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2019;9(5):550–557. https://doi.org/10.28999/2541-9595-2019-9-5-550-557

18. Golik V.I., Mitsik M.F., Aleksakhina Y.V., Alenina E.E., Ruban-Lazareva N.V., Kruzhkova G.V., Kondratyeva O.A., Trushina E.V., Skryabin O.O., Khayrutdinov M.M. Comprehensive Recovery of Metals in Tailings Utilization with Mechanochemical Activation. Resources. 2023;12(10):113. https://doi.org/10.3390/resources12100113

19. Korshak A.A., Nikolaeva A.V., Nagatkina A.S., Gaysin M.T., Korshak A.A., Pshenin V.V. Method for predicting the degree of hydrocarbon vapor recovery at absorption. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2020;10(2):202–209. https://doi.org/10.28999/2541-9595-2020-10-2-202-209

20. Korshak A.А., Pshenin V.V. Determination of parameters of non-pump ejector gasoline vapor recovery unit. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2023;13(1):25–31. https://doi.org/10.28999/2541-9595-2023-13-1-25-31

21. Дидманидзе О.Н., Афанасьев А.С., Хакимов Р.Т. Математическая модель фазового пе-рехода сжиженного метана в криогенном баке транспортного средства. Записки Горного института. 2020;243(3):337-347. https://doi.org/10.31897/PMI.2020.3.337. Didmanidze O.N., Afanasev A.S., Khakimov,R.T. Mathematical model of the liquefied me-thane phase transition in the cryogenic tank of a vehicle. Journal of Mining Institute. 2020;243(3):337–347. https://doi.org/10.31897/PMI.2020.3.337.

22. Задков Д.А., Габов В.В., Бабырь Н.В., Стебнев А.В., Теремецкая В.А. Энергоэффективная секция механизированной крепи очистного комплекса, адаптивная к условиям эксплуатации. Горный информационно-аналитический бюллетень. 2022;(6):46–61. https://doi.org/10.25018/0236_1493_2022_6_0_46 Zadkov D.A., Gabov V.V., Babyr N.V., Stebnev A.V., Teremetskaya V.A. Adaptable and energy-efficient powered roof support unit. Mining Informational and Analytical Bulletin. 2022;2022(6):46-61. (In Russ) https://doi.org/10.25018/0236_1493_2022_6_0_46