Systematization of end effectors of deep milling machines for peat extraction
D.S. Yusov, P.V. Ivanova, S.L. Ivanov
Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russian Federation
Russian Mining Industry №3 / 2024 стр. 85-89
Abstract: Currently, ensuring energy security is a key priority for the country. Peat resources account for one-third of the country's total energy potential. Apart from energy production, peat finds extensive use in agriculture, chemical industry, construction, and the production of construction materials. Presently, milled peat constitutes the main volume of production in the country. The technology of its extraction involves preparing areas and removing undergrowth, stumps, and wood debris during preparation of the deposit by trenching or deep milling. However, due to the imperfections of the equipment, peat contamination and loss of its quality occur. This article analyzes means for carrying out preparatory operations to condition the surface of the deposit. It discusses the designs of end effectors for deep milling machines, their cutting structures, and the specific features of the tools used, i.e. blades, cutters, mills, chains. Classification of end effectors for peat machines as well as tools for deep milling of the deposit surface is proposed. This systematization involves identifying classification features by the type of machines, impact on the wood debris, movement of the end effector, its arrangement and design, as well as by parameters and types of the end effector’s cutting structures. The article may be useful for engineers, researchers, graduate students, and organizations involved in designing and studying processes of peat deposits conditioning.
Keywords: peat, deep milling, peat extraction, blades, cutters, peat deposit, mining machines
For citation: Yusov D.S., Ivanova P.V., Ivanov S.L. Systematization of end effectors of deep milling machines for peat extraction. Russian Mining Industry. 2024;(3):85–89. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-85-89
Article info
Received: 18.03.2024
Revised: 06.05.2024
Accepted: 12.05.2024
Information about the authors
Denis S. Yusov – Postgraduate Student, Department of Mechanical Engineering, The St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Polina V. Ivanova – Cand. Sci. (Eng.), Associate Professor, Department of Mechanical Engineering, The St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-8338-418X
Sergey L. Ivanov – Dr. Sci. (Eng.), Professor, Department of Mechanical Engineering, The St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-7014-2464
References
1. Евзеров В.Я. Торф – неиспользованный сырьевой ресурс северо-запада Российской Арктики. Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2021;(18):160–164. https://doi.org/10.31241/FNS.2021.18.029 Yevzerov V.Ya. Peat – as an untapped resource of the North-Western Russian Arctic. Trudy Fersmanovskoy Nauchnoy Sessii GI KNTs RAN. 2021;(18):160–164. (In Russ.) https://doi.org/10.31241/FNS.2021.18.029
2. Utenkova T.G., Kremcheev E.A., Nagornov D.O., Ivanov S.L. Mechanical dewatering of sapropel in its small-scale mining technology. Sustainable Development of Mountain Territories. 2023;15(2):308–316. https://doi.org/10.21177/1998-4502-2023-15-2-308-316
3. Мякотных А.А., Иванова П.В., Иванов С.Л. К вопросу классификации комплексов добычи торфяного сырья. Горная промышленность. 2023;(6):137–142. https://doi.org/10.30686/1609-9192-2023-6-137-142 Myakotnykh A.A., Ivanova P.V., Ivanov S.L. On classification of peat extraction complexes. Russian Mining Industry. 2023;(6):137– 142. (In Russ.) https://doi.org/10.30686/1609-9192-2023-6-137-142
4. Жигульская А.И., Лемешев А.В., Гусева А.М., Бурмистров И.С. Классификация машин и оборудования для добычи и переработки древесных ресурсов торфяного месторождения. Горный информационно-аналитический бюллетень. 2014;(11):144–150. Zhigulskaya A.I., Lemeshev A.V., Guseva A.M., Burmistrov I.S. Classification of machinery and equipment for the production and processing of wood resources peat deposits. Mining Informational and Analytical Bulletin. 2014;(11):144–150. (In Russ.)
5. Бедретдинов Г.Х. Повышение производительности фрезерных машин при расчистке закустарненных земель. Сельский механизатор. 2021;(2):10–11. Bedretdinov G.H. Increased productivity of milling machines when clearing bushlands. Selskiy Mechanizator. 2021;(2):10–11.
6. Михайлов А.В., Жигульская А.И., Казаков Ю.А. Рациональная технология комплексной разработки торфяных месторождений. Горная промышленность. 2024;(1):66–69. https://doi.org/10.30686/1609-9192-2024-1-66-69 Mikhailov A.V., Zhigulskaya A.I., Kazakov Yu.A. Rational technology for integrated mining of peat deposits. Russian Mining Industry. 2024;(1):66–69. (In Russ.) https://doi.org/10.30686/1609-9192-2024-1-66-69
7. Зюзин Б.Ф., Жигульская А.И., Яконовский П.А., Яконовская Т.Б. Машины и оборудование торфяных производств. Тверь: Тверской государственный технический университет; 2015. 160 с.
8. Фомин К.В., Крылов К.С., Харламов В.Е., Морозихин Н.Н. Моделирование повреждающих воздействий на режущих элементах фрезы при взаимодействии с древесными включениями. Труды Инсторфа. 2020;(21):34–39. Fomin K.V., Krylov K.S., Harlamov V.E., Morozikhin N.N. Modelling of damaging effects on cutting mill elements in interaction with wood inclusions. Trudy Instorfa. 2020;(21):34–39. (In Russ.)
9. Фомин К.В. Расчет взаимных спектральных плотностей моментов сопротивления на рабочих органах торфяного фрезерующего агрегата. Записки Горного института. 2021;251:745–756. https://doi.org/10.31897/PMI.2021.5.14 Fomin K.V. Mutual spectral densities calculation of the moments of resistance on the peat milling unit working bodies. Journal of Mining Institute. 2021;251:745–756. https://doi.org/10.31897/PMI.2021.5.14
10. Яблонев А.Л., Жуков Н.М. Расчет момента сопротивления фрезерованию торфяной залежи при попадании фрезы на пень и определения активной ширины рабочего органа. Вестник Тверского государственного технического университета. Серия: Технические науки. 2021;(2):51–61. https://doi.org/10.46573/2658-5030-2021-51-61 Yablonev A.L., Zhukov N.M. Calculation of the moment of resistance to milling a peat layout when the miller hits a stump and determination of the active width of the working body. Vestnik of Tver State Technical University. Series “Technical Science”. 2021;(2):51–61. (In Russ.) https://doi.org/10.46573/2658-5030-2021-51-61
11. Chertkova E., Sizova V. Economic assessment of low humidity peat production practice. E3S Web of Conferences. 2021;278:01024. https://doi.org/10.1051/e3sconf/202127801024
12. Солопов С.Г., Горцакалян Л.О., Самсонов Л.Н. Торфяные машины и комплексы. М.: Недра; 1973. 392 с.
13. Двоеглазова Ю.А. Основные понятия в баровых исполнительных органах. Область применения. В кн.: Костиков К.С. (ред.) Россия молодая: сб. материалов 13-й Всерос. науч.-практ. конф. с междунар. участием, г. Кемерово, 20–23 апр. 2021 г. Кемерово: Кузбасский государственный технический университет имени Т.Ф. Горбачева; 2021. С. 10302.1–10302.7.
14. Фомин К.В. Расчет спектральных плотностей, составляющих силы сопротивления на фрезе при взаимодействии с торфом. Вестник Тверского государственного технического университета. Серия: Технические науки. 2023;(4):45–52. Режим доступа: https://vestnik-tekh.ru/files/65548c0eeb8ca3.07515302.506.pdf (дата обращения: 16.04.2024). Fomin K.V. Calculation of spectral densities of force components resistance on the cutter when interacting with peat. Vestnik of Tver State Technical University. Series “Technical Science”. 2023;(4):45–52. (In Russ.) Available at: https://vestnik-tekh.ru/files/65548c0eeb8ca3.07515302.506.pdf (accessed: 16.04.2024).
15. Marinov K., Kostov K., Peev D. Operational properties of forestry mulchers for cleaning field protection forest belts after sanitary cuttings. Silva Balcanica. 2023;24(2):59–81. https://doi.org/10.3897/silvabalcanica.24.e109161