Modeling of open pit ventilation in ANSYS CFD

DOI: https://doi.org/10.30686/1609-9192-2024-4-102-106

Читать на русскоя языкеS.S. Kobylkin1, A.S. Kobylkin2, Sis Mue1, Alpha Mamadou Barry3
1 National University of Science and Technology “MISIS”, Moscow, Russian Federation
2 Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation
3 Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, Moscow, Russian Federation

Russian Mining Industry №4 / 2024 p.102-106

Abstract: The safety and efficiency of open-pit mining operations depend on the design decisions made, including those for ventilation. Calculation of open-pit ventilation should be carried out either using the generally accepted methods, which are briefly described in this article, or using dedicated software. The simplest and fastest calculations for ventilation as compared with the traditional graphical method can be done in the Ansys CFD software package. Based on a series of numerical experiments and their verification, this paper offers recommendations on designing a three-dimensional model and on the grid parameters for modeling open-pit ventilation. Recommendations on the choice of initial and boundary conditions are also given. Three basic approaches are proposed to verify the results obtained. The first approach is to check the invariability of the forward and reverse air flow boundaries when the wind speed changes. The second approach is based on the presence of local recirculation zones on individual benches of the leeward wall in the simulation results. And the third approach is implemented when performing a control calculation of the air velocity at an arbitrary point in the open-pit. Designing the open-pit ventilation is a prerequisite for assessing the hazard level of mining operations. Performing ventilation calculations at the stage when technological solutions are selected helps to select the optimal parameters of the mining system.

Keywords: Safety of mining operations, open pit mine, ventilation, modeling of local recirculation zones, Ansys CFD

For citation: Kobylkin S.S., Kobylkin A.S., Sis Mue, Alpha Mamadou Barry. Modeling of open pit ventilation in ANSYS CFD. Russian Mining Industry. 2024;(4):102–106. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-102-106


Article info

Received: 04.06.2024

Revised: 04.07.2024

Accepted: 11.07.2024


Information about the authors

Sergey S. Kobylkin – Dr. Sci. (Eng.), Professor, Department of Mine Safety and Environment, National University of Science and Technology “MISIS”, Moscow, Russian Federation; https://orcid.org/0000-0002-2626-208X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexander S. Kobylkin – Cand. Sci. (Eng.), Senior Researcher, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0000-0002-1512-890X

Sis Mue – Cand. Sci. (Eng.), Doctoral student, Department of Mine Safety and Environment, National University of Science and Technology “MISIS”, Moscow, Russian Federation; https://orcid.org/0009-0009-7838-7149

Alpha Mamadou Barry – Postgraduate Student, Department of Subsoil Use and Oil and Gas Engineering, Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, Moscow, Russian Federation; https://orcid.org/0009-0003-2260-1421


References

1. Гендлер С.Г., Борисовский И.А. Оценка влияния температурных условий на естественную вентиляцию глубоких карьеров арктической зоны. Устойчивое развитие горных территорий. 2022;14(2):218–227. Gendler S.G.1, Borisovskiy I.A. Estimated impact of temperature conditions on deep pits natural ventilation in the Arctic. Sustainable Development of Mountain Territories. 2022;14(2):218–227. (In Russ.)

2. Гендлер С.Г., Борисовский И.А. Оценка особенностей формирования температурных инверсий при открытой добыче полезных ископаемых в условиях Арктики. Известия Тульского государственного университета. Науки о Земле. 2021;(4):59–75. Gendler S.G., Borisovsky I.A. Estimation of peculiarities of temperature inversion formation in open mining in the Arctic conditions. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2021;(4):59–75. (In Russ.)

3. Гендлер С.Г., Борисовский И.А. Оценка эффективности естественного проветривания карьеров при отработке золоторудных месторождений на основе математического моделирования аэродинамических процессов. Известия Тульского государственного университета. Науки о Земле. 2020;(4):441–452. Gendler S.G., Borisovsky I.A. Estimation of the efficiency of natural ventilation of pits during mining the gold deposit based on mathematical modeling of aerodynamic processes. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2020;(4):441–452. (In Russ.)

4. Амосов П.В., Бакланов А.А. Численное моделирование процессов естественного проветривания карьера при вариации его глубины в условиях инверсионного состояния атмосферы. Горная промышленность. 2023;(5S):65–71. https:// doi.org/10.30686/1609-9192-2023-5S-65-71 Amosov P.V., Baklanov A.A. Numerical modeling of natural ventilation processes in an open pit mine at its various depths in inversion atmospheric conditions. Russian Mining Industry. 2023;(5S):65–71. (In Russ.) https://doi.org/10.30686/1609-9192-2023-5S-65-71

5. Amosov P.V. Numerical modeling of open pit ventilation when varying the location of the dust and gas cloud. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2021;(7):5–15. https://doi.org/10.21440/0536-1028-2021-7-5-15

6. Андреев А.А., Маслобоев А.В. Программный модуль расчета времени естественного проветривания карьера (на примере рудника «Железный» АО «Ковдорский ГОК»). В кн.: Труды международного симпозиума «Надежность и качество», г. Пенза, 24 по 31 мая 2021 г. Пенза; 2021. Т. 1. С. 273–276.

7. Кобылкин С.С., Кобылкин А.С., Баловцев С.В., Харисов А.Р. Научно-обоснованные решения по разработке инструкции по составлению плана ликвидации аварий для угольных разрезов. Горный информационно-аналитический бюллетень. 2020;(6-1):84–98. https://doi.org/10.25018/0236-1493-2020-61-0-84-98 Kobylkin S.S., Kobylkin A.S., Balovtsev S.V., Kharisov A.R. Science-based solutions on the development of instructions for an emergency response plan for open-pit mines. Mining Informational and Analytical Bulletin. 2020;(6-1):84–98. (In Russ.) https://doi.org/10.25018/0236-1493-2020-61-0-84-98

8. Воронина Л.Д., Багриновский А.Д., Никитин В.С. Расчёт рудничной вентиляции. М.: Госгортехиздат; 1962. 487 с.

9. Wang Y., Du C., Xu H. Key factor analysis and model establishment of blasting dust diffusion in a deep, sunken open-pit mine. ACS Omega. 2021;6(1):448–455. https://doi.org/10.1021/acsomega.0c04881

10. Huang Z., Ge S., Jing D., Yang L. Numerical simulation of blasting dust pollution in open-pit mines. Applied Ecology and Environmental Research. 2021;17(5):10313–10333. https://doi.org/10.15666/aeer/1705_1031310333

11. Никитин В.С., Битколов Н.З. Проектирование вентиляции в карьерах. М.: Недра; 1980. 171 с.

12. Ушаков К.З., Михайлов В.А. Аэрология карьеров. М.: Недра; 1975. 248 с.

13. Flores F., Garreaud R., Munoz R.C. OpenFOAM applied to the CFD simulation of turbulent buoyant atmospheric flows and pollutant dispersion inside large open pit mines under intense insolation. Computers & Fluids. 2014;90:72–87. https://doi. org/10.1016/j.compfluid.2013.11.012

14. Chen X.-H. On surface mining process dust pollution and measures. Building Technology Dev. 2016;43:158–159.

15. Vaibhav R. Three dimensional computational fluid dynamics models of pollutant transport in a deep open pit mine under Arctic air inversion and mitigation measures. Thesis. Fairbanks, Alaska; 2015. 324 p. Available at: https://www.academia. edu/112151269/ (accessed: 01.06.2024).