Mechanisms of high hazard landslide formation (rapid and slow)

DOI: https://doi.org/10.30686/1609-9192-2024-4-96-100

Читать на русскоя языкеV.V. Dyachenko1, V.A. Turkin2, A.E. Vorobev3, V.V. Kukartsev4, 5, Ya.A. Tynchenko6, 5
1 Novorossiysk Polytechnic Institute (branch) of Kuban State Technological University, Novorossiysk, Russian Federation
2 State Maritime University named after Admiral F.F. Ushakova, Novorossiysk, Russian Federation
3 Fergana Medical Institute of Public Health, Fergana, Republic of Uzbekistan
4 Siberian State University of Science and Technology named after M.F. Reshetnev, Krasnoyarsk, Russian Federation
5 Bauman Moscow State Technical University, Moscow, Russian Federation
6 Siberian Federal University, Krasnoyarsk, Russian Federation

Russian Mining Industry №4 / 2024 p.96-100

Abstract: The article discusses the results of studying the mechanism of formation and movement of rapid and slow clay landslides characterized by increased danger and catastrophic consequences for the technosphere. The consequences of landslides that occurred in various physical and geographical zones with different mineralogical and petrographic composition of rocks are considered. The analysis of the landslide formation features takes into account the slope gradients, actual elevations and local differences in elevation, changes in slope gradients, terrain roughness and direction of slopes, catchment areas, proximity of water bodies, tectonics, as well as the composition of soils and rocks. Three mechanisms that cause the movement of the landslide geomaterials are explained: the impact of gravity forces, fluidization and lubrication of the landslide bed in the direction of movement. It has been established that the gravity forces alone do not enable the rapid displacement of significant masses of geomaterials over long distances. An important factor is the reduced friction at the landslide bed due to lubrication, which is formed as a result of rainfall infiltration or geochemical transformation of a thin layer of bedrock in the course of the landslide geomaterial displacement. Landslides of the discussed genesis can pose a great hazard to various mine workings, open pits, in fact to any form of activity and facilities of the mining industry.

Keywords: landslides, movement mechanisms, gravity, geochemical transformation of underlying rocks, environmental sustainability, nanoparticles

For citation: V.V. Dyachenko, Turkin V.A., Vorobev A.E., Kukartsev V.V., Tynchenko Ya.A. Mechanisms of high hazard landslide formation (rapid and slow). Russian Mining Industry. 2024;(4):96–100. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-96-100


Article info

Received: 25.05.2024

Revised: 01.07.2024

Accepted: 05.07.2024


Information about the authors

Vladimir V. Dyachenko – Dr. Sci. (Geogr.), Professor, Novorossiysk Polytechnic Institute (branch) of the Kuban State Technological University, Novorossiysk, Russian Federation; https://orcid.org/0000-0003-0479-2909; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vladimir A. Turkin – Dr. Sci. (Eng.), Professor, Admiral Ushakov Maritime State University, Novorossiysk, Russian Federation; https://orcid.org/0000-0003-2945-6143; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexander E. Vorobev – Dr. Sci. (Eng.), Professor, Vice-rector, Fergana Medical Institute of Public Health, Fergana, Fergana, Republic of Uzbekistan; https://orcid.org/0000-0002-7324-428X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vladislav V. Kukartsev – Cand. Sci. (Eng.), Associate Professor, Department of Information and Economic Systems, IIE, Siberian State University of Science and Technology named after M.F. Reshetnev, Krasnoyarsk, Russian Federation; Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, Moscow, Russian Federation; ResearcherID: U-6956-2019, Scopus Author ID: 57202283852, https://orcid.org/0000-0001-6382-1736; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Yadviga A. Tynchenko – Junior Researcher, Laboratory of Biofuel Compositions, Siberian Federal University, Krasnoyarsk, Russian Federation; Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Leroueil S. Natural slopes and cuts: movement and failure mechanism. Geotechnique. 2001;51(3):197–243. https://doi. org/10.1680/geot.2001.51.3.197

2. Conte E., Donato A., Troncone A. A finite element approach for the analysis of active slow-moving landslides. Landslides. 2014;11(4):723–731. https://doi.org/10.1007/s10346-013-0446-9

3. Troncone A., Conte E., Donato A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Engineering Geology. 2014;183:265–275. https://doi.org/10.1016/j.enggeo.2014.08.027

4. Conte E., Donato A., Pugliese L., Troncone A. Analysis of the Maierato landslide (Calabria, Southern Italy). Landslides. 2018;15(10):1935–1950. https://doi.org/10.1007/s10346-018-0997-x

5. Crosta G.B., Imposimato S., Roddeman D.G. Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Science. 2003;3(6):523–538. https://doi.org/10.5194/nhess-3-523-2003

6. Calvetti F., di Prisco C.G., Vairaktaris E. DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotechnica. 2017;12(1):129–144. https://doi.org/10.1007/s11440-016-0434-z

7. Malozyomov B.V., Martyushev N.V., Sorokova S.N., Efremenkov E.A., Qi M. Mathematical modeling of mechanical forces and power balance in electromechanical energy converter. Mathematics. 2023;11(10):2394. https://doi.org/10.3390/ math11102394

8. Pirulli M., Pastor M. Numerical study on the entrainment of bed material into rapid landslides. Geotechnique. 2012;62(11):959– 972. https://doi.org/10.1680/geot.10.P.074

9. Fern J., Rohe A., Soga K., Alonso E. The material point method for geotechnical engineering. A Practical Guide. CRC Press; 2019. 442 p. https://doi.org/10.1201/9780429028090

10. Жуков И.А., Голиков Н.С., Мартюшев Н.В. Рационализация конструкции секции скребкового конвейера средствами автоматизированного метода анализа прочностных характеристик. Устойчивое развитие горных территорий. 2022;14(1):142–150. Zhukov I.A., Golikov N.S., Martyushev, N.V. Design rationalization of the scraper conveyor section by means of an automated method of strength characteristics analysis. Sustainable Development of Mountain Territories. 2022;14(1):142–150. (In Russ.)

11. Босиков И.И., Клюев Р.В., Силаев И.В., Стась Г.В. Комплексная оценка трудноформализуемых вентиляционно-технологических процессов на угольных шахтах. Устойчивое развитие горных территорий. 2023;15(3):516–527. https:// doi.org/10.21177/1998-4502-2023-15-3-516-527 Bosikov I.I., Klyuev R.V., Silaev I.V., Stas G.V. Comprehensive assessment of formalized ventilation difficultly and technological processes in coal mines. Sustainable Development of Mountain Territories. 2023;15(3):516–527. (In Russ.) https://doi.org/10.21177/1998-4502-2023-15-3-516-527

12. Босиков И.И., Клюев Р.В., Хетагуров В.Н., Силаев И.В. Комплексная оценка гидродинамических процессов на карьерах клинского месторождения с помощью методов управления ими в массивах горных пород. Устойчивое развитие горных территорий. 2023;15(2):284–297. Bosikov I.I., Klyuev R.V., Khetagurov V.N., Silaev I.V. Comprehensive assessment of hydrodynamic processes in the Klinskoye Quarry with the use of their control methods in rock masses. Sustainable Development of Mountain Territories. 2023;15(2):284–297. (In Russ.)

13. Golik V.I., Klyuev R.V., Martyushev N.V., Kondratiev V.V., Tynchenko V.S., Gladkikh V.A. et al. Reuse and mechanochemical processing of ore dressing tailings used for extracting Pb and Zn. Materials. 2023;16(21):7004. https://doi.org/10.3390/ ma16217004

14. Malozyomov B.V., Martyushev N.V., Sorokova S.N., Efremenkov E.A., Valuev D.V., Qi M. Analysis of a predictive mathematical model of weather changes based on neural networks. Mathematics. 2024;12(3);480. https://doi. org/10.3390/math12030480

15. Zaalishvili V.B., Melkov D.A., Martyushev N.V., Klyuev R.V., Kukartsev V.V., Konyukhov V.Y. et al. Radon emanation and dynamic processes in highly dispersive media. Geosciences. 2024;14(4):102. https://doi.org/10.3390/geosciences14040102

16. Kuznetsov D.V., Klyuev S.V., Ryazanov A.N., Sinitsin D.A., Pudovkin A.N., Kobeleva E.V., Nedoseko I.V. Dry mixes on gypsum and mixed bases in the construction of low-rise residential buildings using 3D printing technology. Construction Materials and Products. 2023;6(6):5. https://doi.org/10.58224/2618-7183-2023-6-6-5

17. Sinitsin D.A., Elrefaei A.E.M.M., Glazachev A.O., Kuznetsov D.V., Parfenova A.A., Volokitina I.E. et al. Study of the characteristics of pavement elements made of rein-forced soil with the use of secondary resources. Construction Materials and Products. 2023;6(6):2. https://doi.org/10.58224/2618-7183-2023-6-6-2

18. Krestinenko N.V. Vernacular architecture in the space of a modern city, based on deep learning methods and threedimensional structural analysis. Construction Materials and Products. 2023;6(6):9. https://doi.org/10.58224/2618-7183-2023-6-6-9