Engineering methodology for operative assessment of seismic blast impact in the boundary rock mass in open pits
S.A. Kozyrev, E.A. Vlasova, E.A. Usashev
Mining Institute of the Kola Scientific Center of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №5 / 2024 p.66-73
Abstract: In order to assess the seismic impact of large-scale blasts on the rock mass immediately adjacent to the blasted block, measurements of the ground displacement rate in the near zone of the blast action were carried out in various sections of the Zhelezny open pit mine of the Kovdorsky GOK JSC. According to the degree of the the rock mass response to dynamic impacts, the open pit was zoned depth-wise. Three areas of seismicity were identified, for which empirical dependences of the change in the displacement rate on the reduced distance and the corresponding coefficients of seismicity and attenuation were obtained. The sizes of the induced fracture zone were calculated using these dependences in relation to the permissible displacement rate. The average size of the jointed rocks increases with the depth of the open pit: it starts sharply (from 0.22 to 1.19 m) within the interval of 0-150 m from the day surface, then continues gradually (from 1.19 to 1.4 m) down to the depth of 450 m, and deeper stabilizes at the level of 1.4-1.5 m, which gives the difference in the size of the induced fracture zones. An engineering methodology was developed for operational assessment of the seismic blast impact on the boundary rock mass during blasting operations in open pits to calculate the width of the cutter break zones, fracturing into the rear part of the rock mass and zones of induced fracturing. Calculations at the design stage allow selecting blasting parameters that minimize the seismic impact on the boundary rock mass. A software program has been developed for operative calculation of the fracture boundaries position in the rear part of the rock massif during borehole blasts. The obtained calculated values are in good conformity with the previously obtained modeling and application data.
Keywords: Open pit, explosives, borehole charges, large-scale blast, seismic blast effect, bench stability
For citation: Kozyrev S.A., Vlasova E.A., Usashev E.A. Engineering methodology for operative assessment of seismic blast impact in the boundary rock mass in open pits. Russian Mining Industry. 2024;(5):66–73. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5-66-73
Article info
Received: 17.07.2024
Revised: 27.08.2024
Accepted: 16.09.2024
Information about the authors
Sergey A. Kozyrev – Dr. Sci. (Eng.), Chief Researcher, Head of Laboratory, Mining Institute of the Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Elena A. Vlasova – Cand. Sci. (Eng.), Senior Researcher, Mining Institute of the Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Evgenii A. Usachev – Leading Technologist, Mining Institute of the Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Шемякин Е.И. Сейсмовзрывные волны в процессе горного производства. М.: ННЦ ГП – ИГД им. А. А. Скочинского; 2004. 75 с.
2. Адушкин В.В., Спивак А.А. Геомеханика крупномасштабных взрывов. М.: Недра; 1993. 319 с.
3. Боровиков В.А., Ванягин И.Ф. Моделирование действия взрыва при разрушении горных пород. М.: Недра; 1990. 231 с.
4. Крюков Г.М. Феноменологическая квазистатическо-волновая теория деформирования и разрушения материалов взрывом зарядов промышленных ВВ. М.: Изд-во Моск. гос. гор. ун-та, 2003. 65 с.
5. Шер Е.Н., Черников А.Г. Расчет параметров радиальной системы трещин, образующейся при взрыве удлиненного заряда в хрупких горных породах. Фундаментальные и прикладные вопросы горных наук. 2015;2(2):299–303. Sher E.N., Chernikov A.G. Calculating parameters of radial crack system induced by elongated charge blasting in brittle rocks. Fundamentalnye i Prikladnye Voprosy Gornykh Nauk. 2015;2(2):299–303. (In Russ.)
6. Менжулин М.Г., Федосеев А.В. Определение размеров зон взрывного разрушения для трещиноватых горных пород с различными заполнителями трещин на примере Михайловского ГОКа. Записки Горного института. 2012;195:120– 123. Режим доступа: https://pmi.spmi.ru/pmi/article/view/6116 (дата обращения: 14.04.2024). Menchzhulin M.G., Fedoseev A.V. Amount of explosive destruction zones for cracked rocks with different crack filler for example Mikhailovsky GOK. Journal of Mining Institute. 2012;195:120–123. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/6116 (accessed: 14.04.2024).
7. Казаков Н.Н. Взрывная отбойка руд скважинными зарядами. М.: Недра; 1975. 192 с.
8. Боровиков В.А., Ванягин И.Ф. К расчету параметров волны напряжения при взрыве удлиненного заряда в горных породах. Взрывное дело. 1976;(76/33):74–85. Borovikov V.A., Vanyagin I.F. К расчету параметров волны напряжения при взрыве удлиненного заряда в горных породах. Explosion Technology. 1976;(76/33):74–85. (In Russ.)
9. Бернард Т. Новая модель для реалистичного моделирования взрыва в 3D. Глобус. Геология и бизнес. 2019;(4):112–127. Режим доступа: https://www.vnedra.ru/tehnologii/informacionnye-tekhnologii/novaya-model-dlya-realistichnogomodelirovaniyavzryva-v-3d-8604/ (дата обращения: 14.04.2024). Bernard T. A new model for realistic blast simulation in 3D. Globus. Geologiya i Biznes. 2019;(4):112–127. (In Russ.) Available at: https://www.vnedra.ru/tehnologii/informacionnye-tekhnologii/novaya-model-dlya-realistichnogo-modelirovaniya-vzryvav-3d-8604/ (accessed: 14.04.2024).
10. Holmberg R., Persson P.-A. The Swedish approach to contour blasting – proceedings of the 4th conference on explosives and blasting technique. In: Konya, C.J. (ed.), Society of Explosives Engineers, New Orleans, Lousiana, February 10–15, 1978, pp. 113–127.
11. Tannant D.D., Peterson J. Evolution of blasting practices at the EkatiTM diamond mine. In: 17th International Mining Congress and Exhibition of Turkey. 2001, pp. 297–304. Available at: https://api.maden.org.tr/uploads/portal/resimler/ekler/9eca5979ccbb752_ek.pdf (accessed: 14.04.2024)
12. Шуйфер М.И., Азаркович А.Е. Расчет размеров зоны трещинообразования при взрыве скважинных зарядов в скальном массиве. Взрывное дело. 1980;(82/39):191–209. Shuifer M.I., Azarkovich A.E. Calculation of the fracture zone sizes due to blasting of borehole charges in the rock mass. Explosion Technology. 1980;(82/39):191–209. (In Russ.)
13. Ляховицкий Ф.М. О соотношении упругих и прочностных свойств горных пород. В кн.: Геофизические исследования. М.: Изд-во МГУ, 1964. Вып. 1. С. 294–305.
14. Козырев С.А., Камянский В.Н., Аленичев И.А. Оценка взаимодействия скважинных зарядов при различных интервалах замедлений между ними. Взрывное дело. 2017;(117-74):60–75. Kozyrev S.A., Kamyansky V.N., Alenichev I.A. Estimation of interaction borehole charges at different delay time between them. Explosion Technology. 2017;(117-74):60–75. (In Russ.)
15. Козырев С.А., Камянский В.Н. Оценка влияния сейсмовзрывных нагрузок в ближней зоне взрыва. Горный информационно-аналитический бюллетень. 2017;(S23):316–324. https://doi.org/10.25018/0236-1493-2017-10-23-316-324 Kozyrev S.A., Kamyansky V.N. Estimation of the effect of seismic loads at the near zone of explosion. Mining Informational and Analytical Bulletin. 2017;(S23):316–324. (In Russ.) https://doi.org/10.25018/0236-1493-2017-10-23-316-324
16. Игнатенко И.М., Яницкий Е.Б., Дунаев В.А., Кабелко С.Г. Трещиноватость породного массива в карьере рудника «Железный» АО «Ковдорский ГОК». Горный журнал. 2019;(10):11–15. https://doi.org/10.17580/gzh.2019.10.01 Ignatenko I.M., Yanitsky E.B., Dunaev V.A., Kabelko S.G. Jointing of rock mass in open pit at the Zhelezny mine of the Kovdor Mining and Processing Plant. Gornyi Zhurnal. 2019;(10):11–15. (In Russ.) https://doi.org/10.17580/gzh.2019.10.01