Assessment of seismicity level based on seismic energy flow distribution at deep levels of the Kukisvumchorr deposit

DOI: https://doi.org/10.30686/1609-9192-2024-5-108-114

Читать на русскоя языкеS.A. Zhukova1, O.G. Zhuravleva1, V.S. Onuprienko2, A.A. Streshnev2
1 Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
2 Kirovsk branch JSC “Apatit”, Kirovsk, Russian Federation

Russian Mining Industry №5 / 2024 p.108-114

Abstract: The article presents the results of studying seismicity during the advancement of mining operations to deep horizons using the case of the Kukisvumchorr apatite-nepheline deposit (the Khibiny massif). Mining of underground reserves of the investigated deposit is complicated by the presence of the Saamsky open pit and the adjacent Yukspor deposit. The study focuses on assessing the area distribution of the seismic event energy flow as the mining operations progress to deep mine levels. Zones of higher values of seismic energy flow density at the lower mine levels were identified as mining operations progressed to deeper levels and developed towards the Saamsky open pit. The results are presented as isoline maps, which helped to identify areas of different levels of seismic energy flow distribution. A classification of seismicity levels according to the seismic energy flow parameter was proposed for the conditions of underground mines of the Kirovsk Branch of Apatit JSC, i.e. the background, background elevated, high, and extremely high seismicity levels.

Keywords: rockburst hazard, geodynamic safety, seismic monitoring, induced seismicity, seismic energy flow, underground mining, Khibiny massif, Kukisvumchorr deposit, Saamsky fault

For citation: Zhukova S.A., Zhuravleva O.G., Onuprienko V.S., Streshnev A.A. Assessment of seismicity level based on seismic energy flow distribution at deep levels of the Kukisvumchorr deposit. Russian Mining Industry. 2024;(5):108–114. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5-108-114


Article info

Received: 07.07.2024

Revised: 27.08.2024

Accepted: 17.09.2024


Information about the authors

Svetlana A. Zhukova – Cand. Sci. (Eng.), Senior Researcher, Laboratory of Prediction of rockburst hazard of rock deposits, Rock Mechanics Department, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0003-0769-6584; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Olga G. Zhuravleva – Cand. Sci. (Eng.), Senior Researcher, Laboratory of Prediction of rockburst hazard of rock deposits, Rock Mechanics Department, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0002-8986-9559; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vyacheslav S. Onuprienko – Chief Engineer, Kirovsk branch JSC “Apatit”, Kirovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Anatoly A. Streshnev – Department of Rockburst Forecasting and Prevention, Kirovsk branch JSC “Apatit”, Kirovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Батугин А.С. Общие закономерности проявления сильных горных ударов и индуцированных землетрясений на участках с предельно напряженным состоянием земной коры. Горный журнал. 2021;(1):22–27. https://doi.org/10.17580/gzh.2021.01.04

Batugin A.S. General features of strong rock bursts and induced earthquakes in critical-stress areas of the Earth’s crust. Gornyi Zhurnal. 2021;(1):22–27. (In Russ.) https://doi.org/10.17580/gzh.2021.01.04

2. Еманов А.Ф., Еманов А.А., Фатеев А.В., Шевкунова Е.В., Подкорытова В.Г., Куприш О.В. Наведенная сейсмичность в угольных и железорудных районах Кузбасса. Российский сейсмологический журнал. 2020;2(3):88–96. https://doi.org/10.35540/2686-7907.2020.3.08 Emanov A.F., Emanov A.A., Fateev A.V., Shevkunova E.V., Podkorytova V.G., Kuprish O.V. Induced seismicity in coal and iron ore regions of Kuzbass. Russian Journal of Seismology. 2020;2(3):88–96. (In Russ.) https://doi.org/10.35540/2686-7907.2020.3.08

3. Еременко А.А., Мулев С.Н., Штирц В.А. Мониторинг геодинамических явлений микросейсмическим методом при освоении удароопасных месторождений. Физико-технические проблемы разработки полезных ископаемых. 2022;(1): 12–22. https://doi.org/10.15372/FTPRPI20220102 Eremenko A.A., Mulev S.N., Shtirts V.A. Microseismic monitoring of geodynamic phenomena in rockburst-hazardous mining conditions. Journal of Mining Science. 2022;58(1):10–19. https://doi.org/10.1134/s1062739122010021

4. Foulger G.R., Wilson M.P., Gluyas J.G., Julian B.R., Davies R.J. Global review of human-induced earthquakes. Earth-Science Reviews. 2018;178:438–514. https://doi.org/10.1016/j.earscirev.2017.07.008

5. Liu J.-P, Feng X.-T. Case Histories of Rockbursts at Metal Mines. In: Feng X.-T. (ed.) Rockburst: Mechanisms, monitoring, warning, and mitigation. Elsevier Inc.; 2018. Chapter 3, pp. 47–92. https://doi.org/10.1016/B978-0-12-805054-5.00003-2

6. Simser B.P. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019;11(5):1036–1043. https://doi.org/10.1016/j.jrmge.2019.07.005

7. Мельников Н.Н. (ред.) Сейсмичность при горных работах. Апатиты: КНЦ РАН; 2002. 325 с.

8. Козырев А.А., Семенова И.Э., Жукова С.А., Журавлева О.Г. Факторы изменения сейсмического режима и локализации опасных зон при крупномасштабном техногенном воздействии. Горная промышленность. 2022;(6):95–102. https://doi.org/10.30686/1609-9192-2022-6-95-102 Kozyrev A.A., Semenova I.E., Zhukova S.A., Zhuravleva O.G. Factors of seismic behavior change and localization of hazardous zones under a large-scale mining-induced impact. Russian Mining Industry. 2022;(6):95–102. (In Russ.) https://doi.org/10.30686/1609-9192-2022-6-95-102

9. Абрашитов А.Ю., Онуприенко В.С., Корчак П.А. Трехуровневая система сейсмического мониторинга массива горных пород Хибинских месторождений апатит-нефелиновых руд. Горная промышленность. 2023;(S1):36–42. https://doi.org/10.30686/1609-9192-2023-S1-36-42 Abrashitov A.Yu., Onuprienko V.S., Korchak P.A. A three-tier system of seismic rock mass monitoring in the Khibiny apatitenepheline ore deposits. Russian Mining Industry. 2023;(1 Suppl.):36–42. (In Russ.) https://doi.org/10.30686/1609-9192-2023-S1-36-42

10. Злобина Т.В., Дягилев Р.А. Апробация метода прогноза сейсмической активности для Верхнекамского месторождения калийных солей. Горный информационно-аналитический бюллетень. 2022;(4):56–66. https://doi.org/10.25018/0236_1493_2022_4_0_56 Zlobina T.V.1, Dyagilev R.A. Testing of seismic activity prediction method at the Upper Kama potash deposit. Mining Informational and Analytical Bulletin. 2022;(4):56–66. (In Russ.) https://doi.org/10.25018/0236_1493_2022_4_0_56

11. Гусева Т.В., Крупенникова И.С., Мокрова А.Н., Передерин В.П. Геодезический спутниковый мониторинг и сейсмическая активность северо-запада России. Современные проблемы дистанционного зондирования Земли из космоса. 2016;13(5):133–141. https://doi.org/10.21046/2070-7401-2016-13-5-133-141 Guseva T.V., Krupennikova I.S., Mokrova A.N., Perederin V.P. Geophysical satellite monitoring and seismic activity of the North-West of Russia. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2016;13(5):133–141. (In Russ.) https://doi.org/10.21046/2070-7401-2016-13-5-133-141

12. Жукова С.А., Журавлева О.Г., Онуприенко В.С., Стрешнев А.А. Изменение потока сейсмической энергии при переходе на глубокие горизонты (месторождение Апатитовый Цирк, Хибинский массив). Горная промышленность. 2023;(4):110–116. https://doi.org/10.30686/1609-9192-2023-4-110-116 Zhukova S.A., Zhuravleva O.G., Onuprienko V.S., Streshnev A.A. Changes in the seismic energy flow when mining deep levels (the Apatite Circus deposit, Khibiny Massif). Russian Mining Industry. 2023;(4):110–116. (In Russ.) https://doi.org/10.30686/1609-9192-2023-4-110-116