Forecast of the geomechanical state of the rock mass in difficult mining and geological conditions based on in-situ test data

DOI: https://doi.org/10.30686/1609-9192-2024-5-129-134

Читать на русскоя языкеK.N. Konstantinov1, Yu.A. Starcev1, E.A. Lobanov2, T.S. Mushtekenov3, A.A. Tsymbalov3
1 Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
2 Kanex Shakhtostroy LLC, Moscow, Russian Federation
3 Polar Branch of MMC Norilsk Nickel, Norilsk, Russian Federation

Russian Mining Industry №5 / 2024 p.129-134

Abstract: In order to support production processes at the Oktyabrsky deposit of rich sulfide ores at a depth of 2000 m two exploration workings were driven in 2020-2023 at the Levels of -1650m and -1750 m. with a length of about two kilometers each. In order to provide ongoing mining operations with a forecast of the geomechanical state of the rock mass, field studies were performed in advanced boreholes using ultrasonic logging (UL), borehole telemetry, and core disking. The UL method is used to study the elastic properties and fracturing of rocks. The fracturing of the bore of the advanced boreholes and the presence of various geological and structural heterogeneities are estimated by the telemetry method. The core disking method is based on the ability of hard rocks to brittle fracture. It is established that the vector of the main compressive stresses acts in the rock mass of the studied workings in different directions. Individual cases of identifying the core disking zones and "tracks" on the periphery of the advanced boreholes are not representative in their parameters for classifying these sites as "rock bump hazardous". Thus, a combination of the obtained data proves the efficiency of the applied forecast of the geomechanical state of the advance boreholes, while the information on the geomechanical state of the rock mass in the vicinity of the advance boreholes made it possible to timely make recommendations regarding the mining prcedures in order to ensure the stability of the workings being constructed.

Keywords: geomechanics, advance boreholes, ultrasonic logging, core disking method, fracturing, longitudinal wave velocity, telemetry, stress field, impact hazard, stability of workings

For citation: Konstantinov K.N., Starcev Yu.A., Lobanov E.A., Mushtekenov T.S., Tsymbalov A.A. Forecast of the geomechanical state of the rock mass in difficult mining and geological conditions based on in-situ test data. Russian Mining Industry. 2024;(5):129–134. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5-129-134


Article info

Received: 25.07.2024

Revised: 27.08.2024

Accepted: 16.09.2024


Information about the authors

Konstantin N. Konstantinov – Researcher, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Yuri A. Starcev – Leading Technologist, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation

Evgeniy A. Lobanov – Managing Director, Kanex Shakhtostroy LLC, Moscow, Russian Federation

Talgat S. Mushtekenov – Counselor to the Director’s Office, Polar Branch of MMC Norilsk Nickel, Norilsk, Russian Federation

Andrey A. Tsymbalov – Deputy Director for Mining Operations, Polar Branch of MMC Norilsk Nickel, Norilsk, Russian Federation


References

1. Abdellah W.R. Serviceability analysis of deep underground openings driven in jointed-rock. International Journal of Mining Science and Technology. 2017;27(6):1019–1024. https://doi.org/10.1016/j.ijmst.2017.06.024

2. Марысюк В.П., Сабянин Г.В., Андреев А.А., Васильев Д.А. Оценка напряженного состояния рудного массива при ведении очистных работ на глубоких рудниках Талнаха. Горный журнал. 2020;(6):17–22. https://doi.org/10.17580/gzh.2020.06.02 Marysyuk V.P., Sabyanin G.V., Andreev A.A., Vasiliev D.A. Stress assessment in deep-level stoping in Talnakh mines. Gornyi Zhurnal. 2020;(6):17–22. (In Russ.) https://doi.org/10.17580/gzh.2020.06.02

3. Bruning T., Karakus M., Akdag S., Nguyen G.D., Goodchild D. Influence of deviatoric stress on ruckburst occurrence: An experimental study. International Journal of Mining Science and Technology. 2018;28(5):763–766. https://doi.org/10.1016/j.ijmst.2018.08.005

4. Козырев А.А., Константинов К.Н., Лобанов Е.А., Волков Д.С., Муштекенов Т.С., Цымбалов А.А. Оценка геомеханического состояния массива пород в окрестности глубоких выработок рудника «Скалистый» комплексом натурных методов. Горная промышленность. 2023;(5):108–113. https://doi.org/10.30686/1609-9192-2023-5-108-113 Kozyrev A.A., Konstantinov K.N., Lobanov E.A., Volkov D.S., Mushtekenov T.S., Tsymbalov A.A. Assessment of the geomechanical state of the rock mass in the vicinity of deep mining workings of the Skalisty mine by in-situ methods. Russian Mining Industry. 2023;(5):108–113. (In Russ.) https://doi.org/10.30686/1609-9192-2023-5-108-113

5. Семенова И.Э., Константинов К.Н., Кулькова М.С. Оценка напряженно-деформированного состояния массива пород в окрестности подземных выработок глубокого заложения комплексом инструментальных и численных методов. Горный журнал. 2024;(1):22–28. https://doi.org/10.17580/gzh.2024.01.04 Semenova I.E., Konstantinov K.N., Kulkova M.S. Estimation of stress–strain behavior in surrounding rock mass around deep underground openings using a set of instrumental and numerical methods. Gornyi Zhurnal. 2024;(1):22–28. (In Russ.) https://doi.org/10.17580/gzh.2024.01.04

6. Леонтьев А.В. Анализ естественных напряжений по результатам измерений в рудниках на территории северной Евразии. Физико-технические проблемы разработки полезных ископаемых. 2001;(1):31–40. Leont’ev A.V. Analysis of natural stresses according to the measurement results in mines on the territory of Northern Eurasia. Journal of Mining Science. 2001;37(1):28–37. https://doi.org/10.1023/A:1016776600934

7. Eremenko V.A., Neguritsa D.L. Efficient and active monitoring of stresses and strains in rock masses. Eurasian Mining. 2016;(1):21–24. https://doi.org/10.17580/em.2016.01.02

8. Неверов С.А. Типизация рудных месторождений с ростом глубины по виду напряженного состояния. Часть I. Современные представления о напряженном состоянии массивов горных пород с ростом глубины. Физико-технические проблемы разработки полезных ископаемых. 2012;(2):56–69. Neverov S.A. Types of orebodies on the basis of the occurrence depth and stress state. Part I: Modern concept of the stress state versus depth. Journal of Mining Science. 2012;48(2):249–259. https://doi.org/10.1134/S1062739148020050

9. Неверов С.А. Типизация рудных месторождений с ростом глубины по виду напряженного состояния. Часть II. Тектонотипы рудных месторождений и модели геосреды. Физико-технические проблемы разработки полезных ископаемых. 2012;(3):25–34. Neverov S.A. Types of orebodies on the basis of the occurrence depth and stress state. Part II: Orebody tectonotypes and geomedium models. Journal of Mining Science. 2012;48(3):421–428. https://doi.org/10.1134/S1062739148030033

10. Дарбинян Т.П., Рышкель И.А., Румянцев А.Е., Бреус К.Э. Геотехническое картирование выработок в рамках построения геомеханической модели рудника «Октябрьский». Горный журнал. 2019;(11):10–13. Режим доступа: https://www.rudmet.ru/journal/1869/article/31778/ (дата обращения: 23.02.2024). Darbinyan T.P., Ryshkel I.A., Rumyantsev A.E., Breus K.E. Geotechnical mapping of underground excavations in the framework of geomechanical model construction for the Oktyabrsky Mine. Gornyi Zhurnal. 2019;(11):10–13. (In Russ.) Available at: https://www.rudmet.ru/journal/1869/article/31778/ (accessed: 23.02.2024).

11. Наговицин Ю.Н., Новиков В.В., Куранов А.Д., Ильинов М.Д. Сопоставление результатов неразрушающего контроля и лабораторных определений свойств руд и пород Октябрьского месторождения. Горный журнал. 2020;(6):42–45. Режим доступа: https://www.rudmet.ru/journal/1933/article/32704/ (дата обращения: 23.02.2024). Nagovitsin Yu.N., Novikov V.V., Kuranov A.D., Iliinov M.D. Comparison of nondestructive testing results and laboratory definitions of ore and rock properties of the Oktyabrskoye deposit. Gornyi Zhurnal. 2020;(6):42–45. (In Russ.) Available at: https://www.rudmet.ru/journal/1933/article/32704/ (accessed: 23.02.2024).

12. Курленя М.В. (ред.) Управление горным давлением в тектонически напряженных массивах. Апатиты; 1996. Ч. 1. 159 с. 13. Lei Q., Goo K. A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 2019;113:121–133. https://doi.org/10.1016/j.ijrmms.2018.12.001