Determination of safe spans of mine workings based on the bearing capacity of rocks in deposit development
V.I. Golik
Moscow State Polytechnic University, Moscow, Russian Federation
Russian Mining Industry №5 / 2024 p.59-63
Abstract: The article focuses on improving methods for calculating parameters of mining operations by accounting the strength of the rocks and the magnitude of natural and man-made stresses. The relevance of research in this area is determined by the fact that overstating the reliability of calculations increases non-recovered reserves, while understating increases the operating hazards. The correctness of determining the stability of the rock outcrop parameters increases when using the phenomenon of self-blocking of rocks upon their exposure. The permissible parameters of the stopes are determined based on generalization of the existing concepts, including the one by M.M. Protodiakonov, according to which only the mass of the rocks contained within the dome acts on the mine working. Information is provided on the state of the mining industry in Russia. The results of studying the stability of the ore-bearing rock masses are presented with the detailed description of the possibility to preserve the span of a flat roof during the development of narrow slightly dipping ore bodies. The paper defines the relationship between the span of the workings of infinite length, the height of the dome of natural equilibrium above it and the engineering and geological properties of rocks. An example of an engineering–geological study of an ore-containing rock mass with graphical interpretation is given. An algorithm has been developed for determining the safe parameters to control the state of the rock mass. It is proved that horizontal stresses play an important role in formation of stresses within the mined area, and controlling the state of the rock mass consists in utilizing the residual bearing capacity of rocks by limiting the length of the spans. It is concluded that the determination of the size of mine workings based on combined criteria of the rock strength and the stress values makes it possible to increase the safety of workers and reduce the dilution of ores with the gangue rock. The results of the research may be demanded in the underground mining of solid minerals.
Keywords: deposit, rock mass, mined-out space, spans, safety
For citation: Golik V.I. Determination of safe spans of mine workings based on the bearing capacity of rocks in deposit development. Russian Mining Industry. 2024;(5S):59–63. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-59-63
Article info
Received: 17.08.2024
Revised: 08.10.2024
Accepted: 16.10.2024
Information about the authors
Vladimir I. Golik – Dr. Sci. (Eng.), Professor of the Department of Metallurgy of Moscow Polytechnic University, Moscow, Russian Federation; https://orcid.org/0000-0002-1181-8452; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Brigida V.S., Golik V.I., Klyuev R.V., Sabirova L.B., Mambetalieva A.R., Karlina Yu.I. Efficiency gains when using activated mill tailings in underground mining. Metallurgist. 2023;67(3-4):398–408. https://doi.org/10.1007/s11015-023-01526-z
2. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Prospects for return of valuable components lost in tailings of light metals ore processing. Metallurgist. 2023;67(1-2):96–103. https://doi.org/10.1007/s11015-023-01493-5
3. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Technology for nonwaste recovery of tailings of the mizur mining and processing plant. Metallurgist. 2023;66(11-12):1476–1480. https://doi.org/10.1007/s11015-023-01462-y
4. Ляшенко В.И. Развитие геомеханического мониторинга свойств и состояния массива горных пород при подземной разработке месторождений сложной структуры. Маркшейдерский вестник. 2016;(1):35–43. Lyashenko V.I. Development of geomechanical monitoring of properties and the condition of the massif of rocks by underground mining of fields of difficult structure. Mine Surveying Bulletin. 2016;(1):35–43. (In Russ.)
5. Рыбак Я., Хайрутдинов М.М., Конгар-Сюрюн Ч.Б., Тюляева Ю.С. Ресурсосберегающие технологии освоения месторождений полезных ископаемых. Устойчивое развитие горных территорий. 2021;13(3):405–415. Rybak Ya., Khayrutdinov M.M., Kongar-Syuryun Ch.B., Tyulyayeva Yu.S. Resource-saving technologies for development of mineral deposits. Sustainable Development of Mountain Territories. 2021;13(3):405–415. (In Russ.)
6. Lei Q., Gao K. A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 2019;113:121–133. https://doi.org/10.1016/j.ijrmms.2018.12.001
7. Vanneschi C., Mastrorocco G., Salvini R. Assessment of a rock pillar failure by using change detection analysis and FEM modelling. International Journal of Geo-Information. 2021;10(11):774. https://doi.org/10.3390/ijgi10110774
8. Xia K., Chen C., Wang T., Yang K., Zhang C. Investigation of mining – induced fault reactivation associated with sublevel caving in metal mines. Rock Mechanics and Rock Engineering. 2022;55(10):5953–5982. https://doi.org/10.1007/s00603-022-02959-9
9. Tu J., Zhang Y., Mei G., Xu N. Numerical investigation of progressive slope failure induced by sublevel caving mining using the finite difference method and adaptive local remeshing. Applied Sciences. 2021;11(9):3812. https://doi.org/10.3390/app11093812
10. Петров Ю.С., Соколов А.А., Раус Е.В. Математическая модель оценки техногенного ущерба от функционирования горных предприятий. Устойчивое развитие горных территорий. 2019;11(4):554–560. Petrov Yu.S., Sokolov A.A., Raus E.V. A mathematical model for estimating technogenic losses from the operation of mining enterprises. Sustainable Development of Mountain Territories. 2019;11(4):554–560. (In Russ.)
11. Kulikova E.Yu., Balovtsev S.V., Skopintseva O.V. Geoecological monitoring during mining operations. Sustainable Development of Mountain Territories. 2024;16(2):580–588. https://doi.org/10.21177/1998-4502-2024-16-2-580-588
12. Гончар Н.В., Пикалов В.А., Соколовский А.В., Терешина М.А. Экологосбалансированная геотехнология освоения природных и техногенных георесурсов. Горная промышленность. 2024;(4):68–73. https://doi.org/10.30686/1609-9192-2024-4-68-73 Gonchar N.V., Pikalov V.A., Sokolovsky A.V., Tereshina M.A. Environmentally balanced geotechnology for development of natural and man-made geological resources. Russian Mining Industry. 2024;(4):68–73. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-68-73