Vibration transportation of solidifying mixtures in underground mining

DOI: https://doi.org/10.30686/1609-9192-2024-5S-184-189

Читать на русскоя языкеV.V. Gerasidi1, V.Yu. Konyukhov2, T.A. Oparina2, V.E. Gozbenko3, 4, A.S. Apatenko5
1 State Maritime University named after Admiral F.F. Ushakova, Novorossiysk, Russian Federation
2 Irkutsk National Research Technical University; Irkutsk, Russian Federation
3 Irkutsk State Transport University, Irkutsk, Russian Federation
4 Angarsk State Technical University, Angarsk, Russian Federation
5 Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation

Russian Mining Industry №5 / 2024 p.184-189

Abstract: Increasing volumes of consumed mineral raw materials alongside with depletion of their reserves in the regions, where their mining is convenient, and other modern phenomena explain the need to modernize the technologies for the development of mineral deposits. One of the main ways to improve the efficiency of mineral raw material extraction is to manage the mined-out space by filling it with solidifying mixtures. At the same time, the problem of transporting these solidifying mixtures to remote areas of the mine becomes more acute. Existing technologies are limited in their ability to solve this challenge, which significantly increases the costs of mining mineral raw materials. The article describes a relatively new technology for transporting a hydraulic mixture over a distance of 2000 m in the vibration-forced mode, which has been used for a number of years in the underground mining of adjacent deposits with preparation of mixtures at one of the deposits and their transportation to another deposit. The paper justifies the possibility of optimizing the processes of hydraulic mixture movement while minimizing the costs and reducing the environmental impact by constructing a pipeline not on the earth's surface, but in the underground workings. The results of justifying the parameters of hydraulic mixture transportation in the vibration-forced mode are given, obtained by modeling according to the criteria of distance and reliability of transportation and confirmed by practice.

Keywords: solidifying mixtures, vibration transport, underground mining, deposits, environment, pipeline transportation

For citation: Gerasidi V.V., Konyukhov V.Yu., Oparina T.A., Gozbenko V.E., Apatenko A.S. Vibration transportation of solidifying mixtures in underground mining. Russian Mining Industry. 2024;(5S):184–189. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-184-189


Article info

Received: 11.09.2024

Revised: 24.10.2024

Accepted: 01.11.2024


Information about the authors

Viktor V. Gerasidi – Cand. Sci. (Eng.), Associate Professor, Admiral F.F. Ushakov State Maritime University, Novorossiysk, Russian Federation; https://orcid.org/0009-0008-1673-3192; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vladimir Yu. Konyukhov – Cand. Sci. (Eng.), Associate Professor, Department of automation and Control, Irkutsk National Research Technical University, Irkutsk, Russian Federation; https://orcid.org/0000-0001-9137-9404; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tatyana A. Oparina – Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Valery E. Gozbenko – Dr. Sci. (Eng.), Professor, Irkutsk State Transport University, Irkutsk, Russian Federation; Angarsk State Technical University, Angarsk, Russian Federation; https://orcid.org/0000-0001-8394-0054; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexey S. Apatenko – Dr. Sci. (Eng.), Professor, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation; https://orcid.org/0000-0002-2492-9274; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Authors’ contributions

The authors declare the equal contribution of all co-authors to the work.


References

1. Tynchenko V., Kukartsev V., Shalaeva D., Zdrestova-Zaharenkova S., Dzhioeva N., Moiseeva K. Development of automated control system of electron-beam welding process. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Application in Systems Design. CoMeSySo 2022. Lecture Notes in Networks and Systems, vol 596. Springer, Cham; 2023, pp. 484–490. https://doi.org/10.1007/978-3-031-21435-6_42

2. Sokolov A.A., Fomenko V.A., Aksenova M.A., Malozyemov B.V., Kerimzhanova M.F. Development of a methodology for radon pollution studies based on algorithms taking into account the influence of constant mountainvalley winds. Applied Chemical Engineering. 2024;7(2):ACE-1865. https://doi.org/10.59429/ace.v7i2.1865

3. Volneikina E., Kukartseva O., Menshenin A., Tynchenko V., Degtyareva K. Simulation-dynamic modeling of supply chains based on big data. In: 2023 22nd International Symposium INFOTEH-JAHORINA, INFOTEH, East Sarajevo, Bosnia and Herzegovina, 15–17 March. 2023. IEEE; 2023, pp. 1–6. https://doi.org/10.1109/INFOTEH57020.2023.10094168

4. Tananykhin D.S. Scientific and methodological support of sand management during operation of horizontal wells. International Journal of Engineering. Transactions A: Basics. 2024;37(07):1395–1407. https://doi.org/10.5829/ije.2024.37.07a.17

5. Kukartsev V.V., Dalisova N., Muzyka P., Yarkova S.A., Degtyareva K.V. Control system for personnel, fuel and boilers in the boiler house. E3S Web of Conferences. 2023;458:01010. https://doi.org/10.1051/e3sconf/202345801010

6. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V., Lobanov D.V., Vakhrushev N.V., Zhigulev A.K. Numerical simulation of temperature field in steel under action of electron beam heating Source. Key Engineering Materials. 2016;712:105–111. https://doi.org/10.4028/www.scientific.net/KEM.712.105

7. Ahmadi M.H., Alizadeh S.M., Tananykhin D., Hadi S.K., Iliushin P., Lekomtsev A. Laboratory evaluation of hybrid chemical enhanced oil recovery methods coupled with carbon dioxide. Energy Reports. 2021;7:960–967. https://doi.org/10.1016/j.egyr.2021.02.005

8. Kozlova A., Kukartsev V., Melnikov V., Kovalev G., Stashkevich A. Finding dependencies in the corporate environment using data mining. E3S Web of Conferences. 2023;431:05032. https://doi.org/10.1051/e3sconf/202343105032

9. Gladkov A., Kukartsev V., Yarkova A., Kuzmich R., Nizameeva A. Development of an automation system for personnel monitoring and control of ordered products. E3S Web of Conferences. 2023;458:01007. https://doi.org/10.1051/e3sconf/202345801007

10. Saychenko L., Tananykhin D., Ashena R. Prevention of scale in the downhole equipment and productive reservoir during the oil well operation. Journal of Applied Engineering Science. 2021;19(2):363–368. https://doi.org/10.5937/jaes0-29696

11. Gladkov A., Kukartsev V., Kozlova A., Grigorev D. Development of requirements for AIS aimed at controlling high turnover. In: 2023 IEEE International Conference on Computing (ICOCO), Langkawi, Malaysia, 9–12 October 2023. IEEE; 2023, pp. 232–236. https://doi.org/10.1109/ICOCO59262.2023.10397670

12. Фастыковский А.Р., Мусатова А.И., Мартюшев Н.В., Карлина А.И. Обоснование нормативных моделей производительности листопрокатного цеха. Сообщение 2. Черные металлы. 2024;(3):63–68. https://doi.org/10.17580/chm.2024.03.10 Fastykovsky A.R., Musatova A.I., Martyushev N.V., Karlina A.I. Feasibility demonstration of normative models for sheet-rolling shop productivity. Message 2. Chernye Metally. 2024;(3):63–68. (In Russ.) https://doi.org/10.17580/chm.2024.03.10

13. Голик В.И., Качурин Н.М., Стась Г.В., Лискова М.Ю. К природо- и ресурсосберегающим технологиям подземной разработки месторождений сложной структуры. Безопасность труда в промышленности. 2022;(9):22–27. https://doi.org/10.24000/0409-2961-2022-9-22-27 Golik V.I., Kachurin N.M., Stas G.V., Liskova M.Yu. To nature- and resource-saving technologies for underground mining of the complex structure deposits. Occupational Safety in Industry. 2022;(9):22–27. (In Russ.) https://doi.org/10.24000/0409-2961-2022-9-22-27

14. Pashkov E.N., Martyushev N.V., Ponomarev A.V. An investigation into autobalancing devices with multireservoir system. IOP Conference Series: Materials Science and Engineering. 2014;66:012014. https://doi.org/10.1088/1757-899X/66/1/012014

15. Vidayev I.G., Martyushev N.V., Ivashutenko A.S., Bogdan A.M. The resource efficiency assessment technique for the foundry production. Advanced Materials Research. 2014;880:141–145. https://doi.org/10.4028/www.scientific.net/AMR.880.141

16. Грязев М.В., Качурин Н.М., Стась Г.В. Пылегазовые выбросы с поверхности породных отвалов ликвидированных шахт угольного бассейна. Устойчивое развитие горных территорий. 2018;10(4):500–508. https://doi.org/10.21177/1998-4502-2018-10-4-500-508 Gryazev M.V., Kachurin N.M., Stas G.V. Dust and gas emissions from the dumps surfaces of the liquidated mines of the Moscow Coal basin. Sustainable Development of Mountain Territories. 2018;10(4):500–508. (In Russ.) https://doi.org/10.21177/1998-4502-2018-10-4-500-508

17. Клюев С.В., Кашапов Н.Ф., Радайкин О.В., Сабитов Л.С., Клюев А.В., Щекина Н.А. Коэффициент надежности по материалу для фибробетона. Строительные материалы и изделия. 2022;5(2):51–58. https://doi.org/10.58224/2618-7183-2022-5-2-51-58 Klyuev S.V., Kashapov N.F., Radaykin O.V., Sabitov L.S., Klyuev A.V., Shchekina N.A. The reliability coefficient for fibre concrete material. Construction Materials and Products. 2022;5(2):51–58. (In Russ.) https://doi.org/10.58224/2618-7183-2022-5-2-51-58

18. Босиков И.И., Клюев Р.В., Силаев И.В., Стась Г.В. Комплексная оценка трудноформализуемых вентиляционно-технологических процессов на угольных шахтах. Устойчивое развитие горных территорий. 2023;15(3):516–527. https://doi.org/10.21177/1998-4502-2023-15-3-516-527 Bosikov I.I., Klyuev R.V., Silaev I.V., Stas G.V. Comprehensive assessment of formalized ventilation difficultly and technological processes in coal mines. Sustainable Development of Mountain Territories. 2023;15(3):516–527. (In Russ.) https://doi.org/10.21177/1998-4502-2023-15-3-516-527

19. Соколов A. A., Орлова Л. Г., Башмур К. А., Кузьмич Р. И., Кукарцев В. В. Моделирование различных режимов работы трансформаторов, применяемых на подстанциях горнодобывающей промышленности. Горный информационно-аналитический бюллетень. 2023;(11-1):278–291. https://doi.org/10.25018/0236_1493_2023_111_0_278 Sokolov A.A., Orlova L.G., Bashmur K.A., Kuzmich R.I., Kukartsev V.V. Ensuring uninterrupted power supply to mining enterprises by developing virtual models of different operation modes of transformer substations. Mining Informational and Analytical Bulletin. 2023;(11-1):278–291. (In Russ.) https://doi.org/10.25018/0236_1493_2023_111_0_278

20. Tynchenko V.S., Tynchenko Ya.A., Rogova D.V., Leonteva A.A., Seregin Yu.N., Bocharov A.N. Energy distribution computation for induction soldered construction elements. AIP Conference Proceedings. 2023;2700:070017. https://doi.org/10.1063/5.0125008

21. Клюев А.В., Кашапов Н.Ф., Клюев С.В., Лесовик Р.В., Агеева М.С., Фомина Е.В., Аюбов Н.А. Разработка щелочеактивированных вяжущих на основе техногенных волокнистых материалов. Строительные материалы и изделия. 2023;6(1):60–73. https://doi.org/10.58224/2618-7183-2023-6-1-60-73 Klyuev A.V., Kashapov N.F., Klyuev S.V., Lesovik R.V., Ageeva M.S., Fomina E.V., Ayubov N.A. Development of alkali-activated binders based on technogenic fibrous materials. Construction Materials and Products. 2023;6(1):60–73. (In Russ.) https://doi.org/10.58224/2618-7183-2023-6-1-60-73

22. Клюев А.В., Кашапов Н.Ф., Клюев С.В., Золотарева С.В., Щекина Н.А., Шорстова Е.С. и др. Экспериментальные исследования процессов структурообразования композиционных смесей с техногенным механоактивированным кремнеземистым компонентом. Строительные материалы и изделия. 2023;6(2):5–18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18 Klyuev A.V., Kashapov N.F., Klyuev S.V., Zolotareva S.V., Shchekina N.A., Shorstova E.S. et al. Experimental studies of the processes of structure formation ofcomposite mixtures with technogenic mechanoactivated silica component. Construction Materials and Products. 2023;6(2):5–18. (In Russ.) https://doi.org/10.58224/2618-7183-2023-6-2-5-18

23. Ardashkin I.B., Yakovlev A.N., Martyushev N.V. Evaluation of the resource efficiency of foundry technologies: Methodological aspect. Advanced Materials Research. 2014;1040:912–916. https://doi.org/10.4028/www.scientific.net/AMR.1040.912

24. Sherov K.T., Tussupova S.O., Mazdubay A.V., Sikhimbayev M.R., Absadykov B.N. Increasing durability of thermo-friction tools by surfacing. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2022;3(453):265–275. https://doi.org/10.32014/2022.2518-170X.195

25. Sherov K.T., Donenbayev B.S., Sikhimbayev M.R., Kuanov I.S., Tazhenova G.D. The research of circular saw blade stability state for thermal frictional cutting by the method of calculation in the form of a hingeless circular arch. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2022;4(454):240–251. https://doi.org/10.32014/2022.2518-170X.213