Influence of the spatial variability of rock strength on the rock burst hazard in rock masses

DOI: https://doi.org/10.30686/1609-9192-2024-6-74-82

Читать на русскоя языкеB.T. Ilyasov1, I.A. Ozhiganov2, A.V. Trofimov3
1 LLC Scientia, Ufa, Russian Federation
2 Ural Branch of JSC VNIMI, Yekaterinburg, Russian Federation
3 LLC Gipronickel, Saint Petersburg, Russian Federation

Russian Mining Industry №6 / 2024 p. 74-82

Abstract: The The reliability of existing criteria and methods for predicting the hazard of rock burst occurrence is currently assessed as insufficient. Not all of the deep and large-scale deposits that are characterized as rock burst prone and hazardous by the current regulatory guidelines are experiencing rock bursts. This paper focuses on critical examination of the rock burst hazard in the rock masses, rather than solely relying on individual rock samples. The article proposes a hypothesis concerning how the homogeneity of a rock mass influences its brittleness and the rock bursts, referencing foundational research that supports this concept. A thought experiment is presented to clarify how the homogeneity of a rock mass can directly influence its brittleness and the rock burst hazard. In order to systematically assess the homogeneity of a rock mass, the proposed methodology involves quantifying the coefficient of variation of strengths in a localized rock mass zone under uniaxial compression and tension. A comprehensive evaluation was conducted to explore the correlation between the rock burst hazard of a rock mass and the coefficient of variation for compressive and tensile strengths, drawing upon empirical data collected from 44 rock varieties across 18 distinct mining locations. The study is concluded by revealing a correlation between the rock burst of rock masses and the coefficient of variation. Suggested threshold values for the coefficient of variation are provided, indicating the rock burst hazard of rock mass in situ. Furthermore, the influences of various factors on the coefficient of variation and of rock burst hazard are examined.

Keywords: rock burst, rock burst phenomena, homogeneity, variability, strength, rocks, coefficient of variation, rock brittleness, rock burst hazard factor

Acknowledgments: The authors express their deep gratitude to Aleksandr B. Makarov, Aleksandr P. Kirkin, Nikolai N. Kuznetsov for constructive discussion of the research topic and their assistance in collecting the factual evidences.

For citation: Ilyasov B.T., Ozhiganov I.A., Trofimov A.V. Influence of the spatial variability of rock strength on the rock burst hazard in rock masses. Russian Mining Industry. 2024;(6):74–82. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-74-82


Article info

Received: 22.09.2024

Revised: 18.11.2024

Accepted: 25.11.2024


Information about the authors

Bulat T. Ilyasov – Cand. Sci. (Eng.), Technical Director, LLC Scientia, Ufa, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ivan A. Ozhiganov – Deputy Director, Ural Branch of JSC VNIMI, Yekaterinburg, Russian Federation

Andrey V. Trofimov – Cand. Sci. (Eng.), Head of the Geotechnical Laboratory at LLC Gipronickel, Saint Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Козырев А.А., Кузнецов Н.Н., Макаров А.Б. О критериях удароопасности горных пород. Горная промышленность. 2023;(S1):61–68. https://doi.org/10.30686/1609-9192-2023-S1-61-68 Kozyrev A.A., Kuznecov N.N., Makarov A.B. On criteria of rockburst hazard. Russian Mining Industry. 2023;(1 Suppl.):61–68. https://doi.org/10.30686/1609-9192-2023-S1-61-68

2. Askaripour M., Saeidi A., Rouleau A., Mercier-Langevin P. Rockburst in underground excavations: A review of mechanism, classification, and prediction methods. Underground Space. 2022;7(4):577–607. https://doi.org/10.1016/j.undsp.2021.11.008

3. Петухов, И.М., Линьков, А.М. Механика горных ударов и выбросов. М.: Недра; 1983. 280 с.

4. Griffith A.A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A. 1921;221:163–198. https://doi.org/10.1098/rsta.1921.0006

5. Wawersik W.R., Fairhurst C. A study of brittle rock fracture in laboratory compression experiments. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1970;7(5):561–575. https://doi.org/10.1016/0148-9062(70)90007-0

6. Brady B.H., Brown E.T. Rock mechanics: For underground mining. Springer Science & Business Media; 2006. 628 p. https://doi.org/10.1007/978-1-4020-2116-9

7. Tang C.A., Kaiser P.K. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure – Part I: Fundamentals. International Journal of Rock Mechanics and Mining Sciences. 1998;35(2):113–121. https://doi.org/10.1016/S0148-9062(97)00009-0

8. Manouchehrian A., Cai M. Influence of material heterogeneity on failure intensity in unstable rock failure. Computers and Geotechnics. 2016;71:237–246. https://doi.org/10.1016/j.compgeo.2015.10.004

9. Tan Y.-L., Guo W.-Y., Gu Q.-H., Zhao T.-B., Yu F.-H., Hu S.-C., Yin Y.-C. Research on the rockburst tendency and ae characteristics of inhomogeneous coal-rock combination bodies. Shock and Vibration. 2016:9271434. https://doi.org/10.1155/2016/9271434

10. Ильясов Б.Т. Прогнозирование деформаций массивов горных пород с применением ПК «Prorock». Проблемы недропользования. 2018;(1):39–51. https://doi.org/10.25635/2313-1586.2018.01.039 Ilyasov B.T. Prognostication of rock mass deformations with using «Prorock» software. Problems of Subsoil Use. 2018;(1):39– 51. (In Russ.) https://doi.org/10.25635/2313-1586.2018.01.039

11. Кубрин С.С., Шек В.М. Геоинформационные системы для исследования опасных горнодинамических явлений. Горный информационно-аналитический бюллетень. 2013;(S5):103–112. Kubrin S.S., Shek V.M. Geographic information system for the study of dangerous mountain dynamic phenomena. Mining Informational and Analytical Bulletin. 2013;(S5):103–112. (In Russ.)

12. Jiang Q., Zhong S., Cui J., Feng X.-T., Song L. Statistical characterization of the mechanical parameters of intact rock under triaxial compression: An experimental proof of the Jinping marble. Rock Mechanics and Rock Engineering. 2016;49(12):4631– 4646. https://doi.org/10.1007/s00603-016-1054-5

13. Deng J., Li S., Jiang Q., Chen B. Probabilistic analysis of shear strength of intact rock in triaxial compression: a case study of Jinping II project. Tunnelling and Underground Space Technology. 2021;111:103833. https://doi.org/10.1016/j.tust.2021.103833

14. John M. Study of Rock Burstability with Mechanical Property Testing and Microscopic Image Analysis [M.S. thesis]. McGill University (Canada); 2022.

15. Herget G., Oliver P., Gyenge M., Yu Y.S. Strength of a mine pillar at Copper Cliff South Mine. Mining Science and Technology. 1984;2(1):1–16. https://doi.org/10.1016/S0167-9031(84)90158-0

16. Bewick R.P., Amann F., Kaiser P.K., Martin C.D. Interpretation of UCS test results for engineering design. In: ISRM Congress 2015 Proceedings – Int’l Symposium on Rock Mechanics, 2015, pp. 1–14.

17. Zou C., Wong L.N.Y. Experimental studies on cracking processes and failure in marble under dynamic loading. Engineering Geology. 2014;173:19–31. https://doi.org/10.1016/j.enggeo.2014.02.003

18. Wong L.N.Y., Zou C., Cheng Y. Fracturing and failure behavior of Carrara marble in quasistatic and dynamic brazilian disc tests. Rock Mechanics and Rock Engineering. 2014;47(4):1117–1133. https://doi.org/10.1007/s00603-013-0465-9

19. Košťák B., Bielenstein H.U. Strength distribution in hard rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1971;8(5):501–521. https://doi.org/10.1016/1365-1609(71)90015-3

20. Лабазина А.А. Определение физико-механических свойств горных пород 12 блока 18 ЮВП шахтного поля СКРУ-3 ВКМКС. В кн.: Файнбург Г.З., Литвиновская Н.А. (ред.) Актуальные проблемы охраны труда и безопасности производства, добычи и использования калийно-магниевых солей: материалы 2-й Междунар. науч.-практ. конф., г. Пермь, 21–22 окт. 2021 г. Пермь; 2021. С. 138–145.

21. Барях А.А., Асанов В.А., Паньков И.Л. Физико-механические свойства соляных пород Верхнекамского калийного месторождения. Пермь: Изд-во Перм. гос. техн. ун-та; 2008. 199 с.

22. Gill D.E. Uniaxial compression as an element in a classification of rocks [M.S. thesis]. McGill University (Canada); 1963. 188 p.

23. Филатов В.В., Болотнова Л.А. О сейсмичности Верхнекамского месторождения калийных солей. Известия высших учебных заведений. Горный журнал. 2020;(1):60–67. https://doi.org/10.21440/0536-1028-2020-1-60-67 Filatov V. V., Bolotnova L. A. On the seismic activity of the Upper Kama potassium salt deposit. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2020;(1):60–67. (In Russ.) https://doi.org/10.21440/0536-1028-2020-1-60-67

24. Маловичко Д.А. Изучение механизма Соликамского землетрясения 5 января 1995 года. Физическая мезомеханика. 2004;7(1):75–90. https://doi.org/10.24411/1683-805X-2004-00209 Malovichko D.A. The study of mechanism of the January 5, 1995 Solikamsk earthquake. Fizicheskaya Mezomekhanika. 2004;7(1):75–90. (In Russ.) https://doi.org/10.24411/1683-805X-2004-00209

25. Зайцев Д.В., Кочанов А.Н., Токтогулов Ш.Ж., Пантелеев И.А., Панфилов П.Е. Влияние масштабного эффекта и неоднородности горных пород при определении их прочностных свойств. Горный информационно-аналитический бюллетень. 2016;(11):208–215. Zaytsev D.V., Kochanov A.N., Toktogulov Sh.Zh., Panteleev I.A., Panfilov P.E. Influence of scale effect and heterogeneity of rocks to determine their strength properties. Mining Informational and Analytical Bulletin. 2016;(11):208–215. (In Russ.)

26. Кузнецов Н.Н. К вопросу об определении количества опытов, надежности и точности результатов при изучении физико-механических свойств горных пород. Вестник МГТУ. Труды Мурманского государственного технического университета. 2015;18(2):183–191. Режим доступа: https://vestnik.mauniver.ru/v18_2_n61/03_Kuznetsov_183-191.pdf (дата обращения: 14.10.2024). Kuznetcov N.N. On the question of determining the amount of experiments, reliability and accuracy of the results in the study of physical-mechanical properties of rocks. Vestnik of MSTU. 2015;18(2):183–191. (In Russ.) Available at: https://vestnik.mauniver.ru/v18_2_n61/03_Kuznetsov_183-191.pdf (accessed: 14.10.2024).

27. Pepe G., Cevasco A., Gaggero L., Berardi R. Variability of intact rock mechanical properties for some metamorphic rock types and its implications on the number of test specimens. Bulletin of Engineering Geology and the Environment. 2017;76:629–644. https://doi.org/10.1007/s10064-016-0912-4