Studying the restoration dynamics of natural ecosystems disturbed by the development of geo-resources based on satellite observations

DOI: https://doi.org/10.30686/1609-9192-2024-6-52-58

Читать на русскоя языкеS.P. Ostapenko, S.P. Mesyats
Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation

Russian Mining Industry №6 / 2024 p. 52-58

Abstract: Factors of the restoration dynamics for natural ecosystems disturbed during the development of geo-resources were identified within the framework of the eco-investment approach to support decision-making on greening the mining operations in Arctic conditions. A methodological approach to study the restoration dynamics of the natural ecosystems disturbed during the development of georesources was developed based on medium-resolution satellite images. It uses a fuzzy neural network model of the relationship between the restoration factors based on the monitoring data for a phytocenosis formed over an artificial gramineous phytocenosis on the enclosing dam of an active tailings dump of ores processing facilities at the Khibiny group of deposits, for the period from 2000 to 2023. An algorithm was developed for a four-fold improvement in the spatial resolution of remote sensing of the surface temperature at the monitored sites based on the MODIS thermal satellite images by reverse calculation of the brightness temperature with account for the difference in the emissivity of their surface due to the vegetation cover, and minimizing the discrepancy between the observed and predicted values of the temperature field. It was found that the determining restoration factors are the minimum land surface temperature and water availability. A spatial distribution of the restoration trends has been identified in the natural ecosystems as well as the priority of the plant moisture stress index.

Keywords: Arctic region, development of geo-resources, ore processing waste, tailings dump, artificial phytocenosis, restoration of natural ecosystems, satellite data, vegetation index, plant moisture stress index, land surface temperature

Acknowledgments: The work was executed within the framework of the State Assignment No. FMEZ-2022-0006 “Development of the eco-investment approach methodology to restoration of natural ecosystems disturbed during the development of georesources”. The initial data of the MODIS satellite observations were collected from the United States Geological Survey (USGS) server. The data were processed using the following freely distributable software: the SeaDAS satellite data processing system, GRASS and QGIS geoinformation systems, FisPro fuzzy data processing system, GNUPlot data visualization system.

For citation: Ostapenko S.P., Mesyats S.P. Studying the restoration dynamics of natural ecosystems disturbed by the development of geo-resources based on satellite observations. Russian Mining Industry. 2024;(6):52–58. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-52-58


Article info

Received: 30.09.2024

Revised: 18.11.2024

Accepted: 25.11.2024


Information about the authors

Sergey P. Ostapenko – Cand. Sci. (Eng.), Leading Researcher, Mining Institute of the Kola Science Centre of the Russian Academy of Science; Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Svetlana P. Mesyats – Leading Researcher, Mining Institute of the Kola Science Centre of the Russian Academy of Science; Apatity, Russian Federation; https://orcid.org/0000-0002-9929-8067; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Werden L.K., Cole R.J., Schönhofer K., Holl K.D., Zahawi R.A., Averill C. et al. Assessing innovations for upscaling forest landscape restoration. One Earth. 2024;7(9):1515–1528. https://doi.org/10.1016/j.oneear.2024.07.011

2. Корнилков С.В., Рыбникова Л.С., Рыбников П.А., Смирнов А.Ю. Геоинформационный мониторинг для решения экологических задач горнопромышленных территорий Среднего Урала. Горная промышленность. 2022;(1S):127–133. https://doi.org/10.30686/1609-9192-2022-1S-127-133 Kornilkov S.V., Rybnikova L.S., Rybnikov P.A., Smirnov A.Yu. Geoinformation monitoring for solving environmental problems of mining territories of the Middle Ural. Russian Mining Industry. 2022;(1 Suppl.):127–133. (In Russ.) https://doi.org/10.30686/1609-9192-2022-1S-127-133

3. Aubin I., Deschênes É., Santala K.R., Emilson E.J.S., Schoonmaker A.L., McIntosh A.C.S. Restoring forest ecosystem services through trait-based ecology. Environmental Reviews. 2024. https://doi.org/10.1139/er-2023-0130

4. Wang Y., Qin K., Zhang Z., He Q., Cohen J. Mapping open-pit mining area in complex mining and mixed land cover zone using Landsat imagery. International Journal of Applied Earth Observation and Geoinformation. 2024;129:103782. https://doi.org/10.1016/j.jag.2024.103782

5. Дёгтева С.В. Особенности восстановления растительности на отвалах отработанных россыпей Приполярного Урала. Теоретическая и прикладная экология. 2021;(3):80–89. https://doi.org/10.25750/1995-4301-2021-3-080-089 Degteva S.V. Features of vegetation restoration on the dumps of spent minings of the Subpolar Urals. Theoretical and Applied Ecology. 2021;(3):80–89. (In Russ.) https://doi.org/10.25750/1995-4301-2021-3-080-089

6. Sikakwe G.U. Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: A review. Remote Sensing Applications: Society and Environment. 2023;31:100988. https://doi.org/10.1016/j.rsase.2023.100988

7. Li S., Xu L., Jing Y., Yin H., Li X., Guan X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation. 2021;105:102640. https://doi.org/10.1016/j.jag.2021.102640

8. Pasquarella V.J., Arévalo P., Bratley K.H., Bullock E.L., Gorelick N., Yang Z., Kennedy R.E. Demystifying LandTrendr and CCDC temporal segmentation. International Journal of Applied Earth Observation and Geoinformation. 2022;110:102806. https://doi.org/10.1016/j.jag.2022.102806

9. Месяц С.П., Новожилова М.Ю., Румянцева Н.С., Волкова Е.Ю. Научное обоснование восстановления природных экосистем, нарушенных при освоении георесурсов. Горный журнал. 2019;(6):77–83. https://doi.org/10.17580/gzh.2019.06.11 Mesyats S.P., Novozhilova M.Yu., Rumyantseva N.S., Volkova E.Yu. Scientific substantiation of the natural ecosystems restoration disturbed during the development of georesources. Gornyi Zhurnal. 2019;(6):77–83. (In Russ.) https://doi.org/10.17580/gzh.2019.06.11

10. Остапенко С.П., Месяц С.П. Оценка потенциала восстановления экологического состояния природных экосистем, нарушенных при освоении георесурсов, по спутниковым данным. Горная промышленность. 2023;(S5):80–86. https://doi.org/10.30686/1609-9192-2023-5S-80-86 Ostapenko S.P., Mesyats S.P. Assessment of the potential for restoration of the environmental state of the natural ecosystems disturbed by development of geo-resources based on satellite data. Russian Mining Industry. 2023;(5S):80–86. (In Russ.) https://doi.org/10.30686/1609-9192-2023-5S-80-86

11. Солдатова О.П., Лёзин И.А., Лёзина И.В. Исследование эффективности алгоритмов генерации базы нечетких продукционных правил для нейронной сети Ванга – Менделя. Известия высших учебных заведений. Поволжский регион. Технические науки. 2023;(1):86–100. https://doi.org/10.21685/2072-3059-2023-1-7 Soldatova O.P., Lyozin I.A., Lyozina I.V. Studying the efficiency of algorithms for generating the base of fuzzy production rules for the Wang-Mendel neural network. University Proceedings. Volga Region. Engineering Sciences. 2023;(1):86–100. (In Russ.) https://doi.org/10.21685/2072-3059-2023-1-7

12. Alateeq M., Pedrycz W. Logic-oriented fuzzy neural networks: A survey. Expert Systems with Applications. 2024;257:125120. https://doi.org/10.1016/j.eswa.2024.125120

13. Łapa K. Increasing the explainability and trustiness of Wang–Mendel fuzzy system for classification problems. Applied Soft Computing. 2024;167(Part A):112257. https://doi.org/10.1016/j.asoc.2024.112257

14. Christos V., Tsekouras G.E., Palaiologou P., Kalabokidis K. Neural-Network time-series analysis of MODIS EVI for post-fire vegetation regrowth. ISPRS International Journal of Geo-Information. 2018;7(11):420. https://doi.org/10.3390/ijgi7110420

15. Yamanouchi T., Takata K. Rapid change of the Arctic climate system and its global influences - Overview of GRENE Arctic climate change research project (2011–2016). Polar Science. 2020;25:100548. https://doi.org/10.1016/j.polar.2020.100548

16. Treitz P.M., Atkinson D.M., Blaser A., Bonney M.T., Braybrook C.A., E.C. Buckley et al. Remote sensing of biogeophysical variables at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, Canada. Arctic Science. 2024;10(2):281– 304. https://doi.org/10.1139/as-2023-0043

17. Beamish A., Raynolds M.K., Epstein H., Frost G.V., Macander M.J., Bergstedt H. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment. 2020;246:111872. https://doi.org/10.1016/j.rse.2020.111872