Increasing operational efficiency of sectional pumps in kimberlite mines

DOI: https://doi.org/10.30686/1609-9192-2024-6-83-88

Читать на русскоя языкеN.P. Ovchinnikov
Ammosov North-Eastern Federal University, Yakutsk, Russian Federation

Russian Mining Industry №6 / 2024 p. 83-88

Abstract: When an underground mine reaches the design capacity, the level of the mine water pollution can significantly increase as compared to the first years of its operation. For example, concentration of solid particles in water in a kimberlite mine drainage systems may increase more than two-fold. Increase in the content of suspended abrasive substances in the mine water negatively affects the life of water drainage equipment. One of the ways to improve the operational efficiency of sectional pumps in conditions of changing solid particles content in the mine water is to study the issue of adjusting the frequency of their overhaul. As a criterion of the optimum average time between overhauls of a sectional pump it is necessary to use its flow rate at the moment of overhaul, which corresponds to low specific operating costs for pumping mine water regardless of the size of water inflow and its pumping mode. Based on the results of the performed research a universal method of calculating the optimal average operating life time of a sectional pump before the overhaul is required. This methodology was developed for sectional pumps in kimberlite mines regardless of their model and their operating conditions. Calculations helped to establish that when the concentration of solid particles in the mine waters increases, a decrease in the average time between overhauls of sectional pump before overhaul becomes an economically feasible step.

Keywords: kimberlite mine, drainage, sectional pumps, mechanical impurities, solid minerals

For citation: Ovchinnikov N.P. Increasing operational efficiency of sectional pumps in kimberlite mines. Russian Mining Industry. 2024;(6):83–88. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-83-88


Article info

Received: 26.10.2024

Revised: 21.11.2024

Accepted: 27.11.2024


Information about the authors

Nickolay P. Ovchinnikov – Сand. Sci. (Eng.), Assistant Professor, Director of the Mining Institute, Ammosov North-Eastern Federal University, Yakutsk, Russian Federation; https://orcid.org/0000-0002-4355-5028; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Бражник О.И., Руденко А.А. Результаты опытно-промышленных испытаний секционного насоса GP-200/11x500-m. Горная промышленность. 2020;(6):53–55. https://doi.org/10.30686/1609-9192-2020-6-53-55 Brazhnik O.I., Rudenko A.A. Pilot test results of GP-200/11x500-m stage chamber pump. Russian Mining Industry. 2020;(6):53– 55. (In Russ.) https://doi.org/10.30686/1609-9192-2020-6-53-55

2. Александров В.И., Авксентьев С.Ю., Махараткин П.Н. Энергоэффективность систем шахтного водоотлива. Горный информационно-аналитический бюллетень. 2017;(2):253–268. Aleksandrov V.I., Avksent'ev S.Yu., Makharatkin P.N. Energy efficiency of mine water outflow. Mining Informational and Analytical Bulletin. 2017;(2):253–268. (In Russ.)

3. Паламарчук Т.Н. Кавитационные режимы шахтных насосов при положительной и отрицательной высоте всасывания. Известия Тульского государственного университета. Науки о Земле. 2017;(4):204–219. Palamarchuk T.N. Cavinanion modes of mine pimps with positive and negative suction lifts. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2017;(4):204–219. (In Russ.)

4. Долганов А.В. Влияние гидроабразивного износа элементов проточной части на эксплуатационные качества центробежных насосов медно-колчеданных рудников. Горный информационно-аналитический бюллетень. 2015;(8):181–186. Режим доступа: https://giab-online.ru/files/Data/2015/08/181-186_8_2015.pdf (дата обращения: 08.10.2024). Dolganov A.V. The influence of hydro-abrasive depreciation of excretory elements on exploitation qualities of rotary pumps at copper and pyrites pits. Mining Informational and Analytical Bulletin. 2015;(8):181–186. (In Russ.) Available at: https://giab-online.ru/files/Data/2015/08/181-186_8_2015.pdf (accessed: 08.10.2024).

5. Долганов А.В. Гидроабразивный износ и экономичность водоотливных установок шахт и рудников. Горный информационно-аналитический бюллетень. 2019;(S9):3–8. Dolganov A.V. Hydroabrasive wear and profitability of water-drainage installations in mines and ore mines. Mining Informational and Analytical Bulletin. 2019;(S9):3–8. (In Russ.)

6. Зотов В.В., Мнацаканян В.У., Базлин М.М., Лакшинский В.С., Дятлова Е.В. Повышение ресурса рабочих колес центробежных насосов шахтного водоотлива. Горная промышленность. 2024;(2):143–146. https://doi.org/10.30686/1609-9192-2024-2-143-146 Zotov V.V., Mnatsakanyan V.U., Bazlin M.M., Lakshinsky V.S., Dyatlova E.V. Extending the service life of centrifugal dewatering pump impellers in mines. Russian Mining Industry. 2024;(2):143–146. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-143-146

7. Shen Z., Li R., Han W., Quan H. Erosion wear in impeller of double-suction centrifugal pump due to sediment flow. Journal of Applied Fluid Mechanics. 2020;13(4):1131–1142. https://doi.org/10.36884/jafm.13.04.30907

8. Deng L., Hu Q., Chen J., Kang Y. Particle distribution and motion in six-stage centrifugal pump by means of slurry experiment and CFD-DEM simulation. Journal of Marine Science and Engineering. 2021;9(7):716. https://doi.org/10.3390/jmse9070716

9. Deng L., Lu H., Liu S., Hu Q., Yang J., Kang Y., Sun P. Particle anti-accumulation design at impeller suction of deep-sea mining pump and evaluation by CFD-DEM simulation. Ocean Engineering. 2023;279:114598. https://doi.org/10.1016/j.oceaneng.2023.114598

10. Banka J., Rai A.K. Erosion and flow visualization in centrifugal slurry pumps: a comprehensive review of recent developments and future outlook. Particulate Science and Technology. 2024;42(3):427–459. https://doi.org/10.1080/02726351.2023.2259336

11. Овчинников Н.П., Зырянов И.В. Обоснование оптимальной периодичности проведения капитального ремонта шахтных насосов. Горный журнал. 2024;(2):61–65. https://doi.org/10.17580/gzh.2024.02.10 Ovchinnikov N.P., Zyryanov I.V. Optimum frequency of full repair for mine pumps. Gornyi Zhurnal. 2024;(2):61–65. (In Russ.) https://doi.org/10.17580/gzh.2024.02.10

12. Овчинников Н.П. Оценка влияния твердой фазы шахтных вод на эффективность секционных насосов при разработке месторождений кимберлитовых руд. Горные науки и технологии. 2022;7(2):150–160. https://doi.org/10.17073/2500-0632-2022-2-150-160 Ovchinnikov N.P. Assessment of mine water solid phase impact on section pumps performance in the development of kimberlite ores. Mining Science and Technology (Russia). 2022;7(2):150–160. https://doi.org/10.17073/2500-0632-2022-2-150-160

13. Веселов А.И. Рудничный водоотлив. Свердловск: Металлургиздат; 1956. 532 с.