Vegetation and soil indices for satellite monitoring of lands in areas of surface coal mining

DOI: https://doi.org/10.30686/1609-9192-2025-1-118-122

Читать на русскоя языкеP.P. Manevich1 , V.V. Antoshin2, K.S. Kolikov3
1 PLC “Roskadastr”, Moscow, Russian Federation
2 LLC NGK “Gorny”, Moscow, Russian Federation
3 National University of Science and Technology MISIS, Moscow, Russian Federation

Russian Mining Industry №1 / 2025 p. 118-122

Abstract: The operation of coal mines has a complex negative impact on adjacent natural areas. Continuous land monitoring is essential for developing effective strategies for restoration and reclamation of mining and natural landscapes in the coal mining regions. Satellite missions are actively used for this purpose. The article presents an analysis of soil and vegetation indices employed for land monitoring in areas of surface coal mining using Earth remote sensing data. It discusses the theoretical foundations and practical applications of satellite indices that enable the assessment of vegetation and soil conditions. A special attention is given to the potential use of these indices in identifying the degradation processes and evaluating the effectiveness of reclamation efforts in the disturbed areas. The methodology for calculating the vegetation indices is based on analyzing spectral characteristics of the vegetation and soils, reflecting their internal structure and composition. The article provides examples of the index application in analyzing areas with sparse vegetation and high soil background levels, typical of the coal mining regions. Limitations of the indices are discussed, along with the possible correction methods to enhance the accuracy of satellite monitoring.

Keywords: earth remote sensing, vegetation indices, soil indices, satellite monitoring, open-pit coal mining, land reclamation, spectral data

For citation: Manevich P.P., Antoshin V.V., Kolikov K.S. Vegetation and soil indices for satellite monitoring of lands in areas of surface coal mining. Russian Mining Industry. 2025;(1):118–122. (In Russ.) https://doi.org/10.30686/1609-9192-2025-1-118-122


Article info

Received: 17.11.2024

Revised: 09.01.2025

Accepted: 13.01.2025


Information about the authors

Polina P. Manevich – Chief Editor of the Department of Scientific and Technical Information at the Department of Scientific and Technical Development and Innovations in the Field of Geodesy, Cartography, and Geoinformation Technologies, PLC “Roskadastr”, Moscow, Russian Federation; e-mail: polina.manevich@yandex.ru

Vladislav V. Antoshin – Director of Industrial Safety, Health and Environment Safety Department, LLC NGK “Gorny”, Moscow, Russian Federation; e-mail: antoshinVV@ngk-gornyi.ru

Konstantin S. Kolikov – Dr. Sci. (Eng.), Professor, Head of Department of the Safety and Ecology of Mining, Mining Institute, National University of Science and Technology MISIS, Moscow, Russian Federation; https://orcid.org/0000-0001-8831-1927 ; e-mail: kolikovks@mail.ru


References

1. Петренко И.Е., Шинкин В.К. Итоги работы угольной промышленности России за январь–март 2022 года. Уголь. 2022;(6):6–16. https://doi.org/10.18796/0041-5790-2022-6-6-16 Petrenko I.E., Shinkin V.K. Russia’s coal industry performance for January – March, 2022. Ugol’. 2022;(6):6–16. (In Russ.) https://doi.org/10.18796/0041-5790-2022-6-6-16

2. Соколовский А.В., Гончар Н.В. Оценка направлений использования техногенных ресурсов при отработке различных видов минерального сырья. Горная промышленность. 2023;(5):102–107. https://doi.org/10.30686/1609-9192-2023-5-102-107 Sokolovsky A.V., Gonchar N.V. Assessment of directions to use man-made resources in the development of various types of mineral raw materials. Russian Mining Industry. 2023;(5):102–107. (In Russ.) https://doi.org/10.30686/1609-9192-2023-5-102-107

3. Акматов Д.Ж., Евлоев Х.Ю., Меллер А.Д., Манукян Т.А., Чадин В.Н. Методика численного моделирования полей напряжений в районе размещения угольных шахт. Горная промышленность. 2023;(1):39–44. https://doi.org/10.30686/1609-9192-2023-1-39-44 Akmatov D.Zh., Evloev H.Y., Meller A.D., Manukyan T.A., Chadin V.N. Methodology for numerical modeling of stress fields in vicinities of coal mines. Russian Mining Industry. 2023;(1):39–44. (In Russ.) https://doi.org/10.30686/1609-9192-2023-1-39-44

4. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. 2017;202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

5. Naghibi S.A., Pourghasemi H.R., Dixon B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment. 2016;188:44. https://doi.org/10.1007/s10661-015-5049-6

6. Huete A.R., Jackson R.D., Post D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment. 1985;17(1):37–53. https://doi.org/10.1016/0034-4257(85)90111-7

7. Huete A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 1988;25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X

8. Gitelson A.A., Kaufman Y.J., Merzlyak M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment. 1996;58(3):289–298. https://doi.org/10.1016/s0034-4257(96)00072-7

9. Kaufman Y.J., Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing. 1992;30(2):261–270. https://doi.org/10.1109/36.134076

10. Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 2002;83(1-2):195–213. https://doi.org/10.1016/S0034-4257(02)00096-2