A method to monitor and reliably predict emergence of road landslides using a digital device
A.L. Kortiev, B.D. Khastsaev, A.A. Kortiev
North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russian Federation
Russian Mining Industry №1S / 2025 p. 47-54
Abstract: Development of digital devices for early detection of landslide causes is a topical problem, because such devices ensure efficiency in eliminating the adverse effects caused by landslides. The research solves this problem by developing a simpleto-implement digital device for monitoring the processes that take place in the ground, based on systematic measurement of the ground impedance parameters and processing of the measured values using a neural network. The device proposed in the paper is characterised by high metrological and economic performance, which ensures a wide range of application and reliable prediction of landslide initiation. The paper discusses: a block diagram of the digital device to protect roads from landslides and a structural diagram of the device's measuring circuit, which provides a three-wire connection to the measured object and applied structural changes in the original measuring circuit. The synthesized measuring circuit eliminates the dependence of the conversion accuracy on both the resistance of the long connecting wires and the nonlinearity of the output characteristic of the measuring circuit.ining enterprises and makes it possible to define the tasks for practical implementation of mining business projects.
Keywords: digital device, block diagram, structural diagram, measuring circuit, measuring electrodes, long connecting wires, impedance parameters, impedance measurement, resistance sensors, temperature sensors, mass sensors, humidity sensors, precipitation sensors, artificial neural networks
Acknowledgments: This work was financially supported by a grant from the Russian Science Foundation (Project No.23-1720001).
For citation: Kortiev A.L., Khastsaev B.D., Kortiev A.A. A method to monitor and reliably predict emergence of road landslides using a digital device. Russian Mining Industry. 2025;(1S):47–54. https://doi.org/10.30686/1609-9192-2025-1S-47-54
Article info
Received: 03.01.2025
Revised: 24.01.2025
Accepted: 27.01.2025
Information about the authors
Alan L. Kortiev – Cand. Sci. (Eng.), Head of the Department of Road Traffic Safety, North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russian Federation; https://orcid.org/0000-0001-8859-7099; e-mail: kortiev73@mail.ru
Boris D. Khastsaev – Dr. Sci. (Eng.), Professor, Department of Industrial Electronics, North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russian Federation
Aslan A. Kortiev – student, Faculty of Information Technologies and Electronic Engineering, North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russian Federation
References
1. Воробьев А.Е., Торобеков Б.Т. Выявление базовых особенностей передвижения оползней. Известия Кыргызского государственного технического университета им. И. Раззакова. 2022;(1):159–169. Vorobyov A.E., Torobekov B.T. Revealing the basic features of landslide movement. Proceedings of the Kyrgyz State Technical University named after I. Razzakov. 2022;(1):159–169. (In Russ.).
2. Карпик А.П., Хорошилов В.С., Комиссаров А.В. Анализ методов и средств изучения динамики перемещений оползневых склонов. Вестник Сибирского государственного университета геосистем и технологий. 2021:26(6):17–32. https://doi.org/10.33764/2411-1759-2021-26-6-17-32 Karpik A.P., Khoroshilov V.S., Komissarov A.V. Analysis of methods and tools for studying the dynamics of displacement of landslides. Vestnik of the Siberian State University of Geosystems and Technologies. 2021:26(6):17–32. (In Russ.) https://doi.org/10.33764/2411-1759-2021-26-6-17-32
3. Адиева Г.М., Сатыбаев А.Д., Ташбаева Н. Исследование поведения оползня на основе программы Flow-R. Universum: технические науки. 2023;(12-1):19–22. Режим доступа: https://7universum.com/ru/tech/archive/item/16445 (дата обращения: 02.10.2024). Adieva G., Satybaev A., Tashbaeva N. Study of landslide behavior based on the Flow-R program. Universum: Tekhnicheskie Nauki. 2023;(12-1):19–22. (In Russ.) Available at: https://7universum.com/ru/tech/archive/item/16445 (accessed: 02.10.2024).
4. Safiullin R.N., Reznichenko V.V., Gorlatov D.V. Modeling and optimization of processes of transportation of heavy cargoes based on the automation of monitoring systems for the motor vehicles movement. IOP Conference Series: Earth and Environmental Science. 2019;378:012069. https://doi.org/10.1088/1755-1315/378/1/012069
5. Safiullin R.N., Reznichenko V.V., Safiullin R.R. The software adaptive system for managing the heavy cargo transportation process based on the automated vehicle weight and size control system. Journal of Physics: Conference Series. 2021;1753:012063. https://doi.org/10.1088/1742-6596/1753/1/012063
6. Safiullin R., Epishkin A., Safiullin R., Haotian T. Method of forming an integrated automated control system for intelligent objects. In: Ceur workshop proceedings: Proceedings of the 2nd International Scientific and Practical Conference “Information Technologies and Intelligent Decision Making Systems” (ITIDMS-II-2021). Aachen, Germany; 2021, pp. 17–26.
7. Safiullin R., Efremova V., Ivanov B. The method of multi-criteria evaluation of the effectiveness of the integrated control system of a highly automated vehicle. The Open Transportation Journal. 2024;18:e18744478309909. https://doi.org/10.2174/0118744478309909240807051315
8. Safiullin R., Arias Z.P. Comprehensive assessment of the effectiveness of passenger transportation processes using intelligent technologies. The Open Transportation Journal. 2024;18:e26671212320514. https://doi.org/10.2174/0126671212320514240611 100437
9. Belikova D.D., Safiullin R.N. The design and evaluation of a telematic automated system of weight control for heavy vehicles. Infrastructures. 2022;7(7):86. https://doi.org/10.3390/infrastructures7070086
10. Гендлер С.Г., Братских А.С. Актуальные проблемы возгорания угольных скоплений в породных отвалах. Горная промышленность. 2024;(5S):71–77. https://doi.org/10.30686/1609-9192-2024-5S-71-77 Gendler S.G., Bratskih A.S. Actual problems of coal accumulations ignition in rock dumps. Russian Mining Industry. 2024;(5S):71–77. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-71-77
11. Левшин М.В. Взаимосвязь частоты электрического сигнала и удельного сопротивления при электрофизическом подходе оценки свойств почв гумидной зоны. Вестник НГИЭИ. 2020;(10):33–42. Levshin M.V. The relationship between the frequency of the electric signal and resistivity in the electrophysical approach to assessing the properties of soils in the humid zone. Bulletin NGIEI. 2020;(10):33–42. (In Russ.)
12. Беликова Д.Д., Морозов Е.В., Хисамутдинова Э.Л. Оптимальное управление силовыми агрегатами горных машин в диапазоне эксплуатационных режимов при применении системы контроля качества моторного масла. Горный информационно-аналитический бюллетень. 2021;(6):95–103. https://doi.org/10.25018/0236_1493_2021_6_0_95 Belikova D.D., Morozov E.V., Khisamutdinova E.L. Optimizing control of mining machine power-units within the normal power setting range by means of engine oil quality monitoring. Mining Informational and Analytical Bulletin. 2021;(6):95– 103. https://doi.org/10.25018/0236_1493_2021_6_0_95
13. Борисов С.В., Колтунова Е.А., Кладиев С.Н. Совершенствование структуры имитационной модели тягового асинхронного электропривода рудничного электровоза. Записки Горного института. 2021;247:114–121. https://doi.org/10.31897/PMI.2021.1.12 Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement. Journal of Mining Institute. 2021;247:114–121. https://doi.org/10.31897/PMI.2021.1.12
14. Позднякова А.Д., Поздняков Л.А. Электрофизические и геоинформационные методы картографирования биологических свойств торфоземов. Бюллетень Почвенного института имени В.В. Докучаева. 2020;(103):149–167. https://doi.org/10.19047/0136-1694-2020-103-149-167 Pozdnyakova A.D., Pozdnyakov L.A. Electrophysical and geoinformational methods of mapping the biological properties of peats. Dokuchaev Soil Bulletin. 2020;(103):149–167. (In Russ.) https://doi.org/10.19047/0136-1694-2020-103-149-167
15. Петраков Д.Г., Пеньков Г.М., Золотухин А.Б. Экспериментальное исследование влияния горного давления на проницаемость песчаника. Записки Горного института. 2022;254:244–251. https://doi.org/10.31897/PMI.2022.24 Petrakov D.G., Penkov G.M., Zolotukhin A.B. Experimental study on the effect of rock pressure on sandstone permeability. Journal of Mining Institute. 2022;254:244–251. https://doi.org/10.31897/PMI.2022.24
16. Курганов В.М., Грязнов М.В., Колобанов С.В. Оценка надежности функционирования экскаваторно-автомобильных комплексов в карьере. Записки Горного института. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10 Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10
17. Назарычев А.Н., Дяченок Г.В., Сычев Ю.А. Исследование надежности тягового электропривода карьерных самосвалов на основе анализа отказов его функциональных узлов. Записки Горного института. 2023;261:363–373. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16189 (дата обращения: 15.11.2024). Nazarychev A.N., Dyachenok G.V., Sychev Y.A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts. Journal of Mining Institute. 2023;261:363–373. Available at: https://pmi.spmi.ru/pmi/article/view/16189 (accessed: 15.11.2024).
18. Литвиненко В.С., Цветков П.С., Двойников М.В., Буслаев Г.В. Барьеры реализации водородных инициатив в контексте устойчивого развития глобальной энергетики. Записки Горного института. 2020;244:428–438. https://doi.org/10.31897/PMI.2020.4.5 Litvinenko V.S., Tsvetkov P.S., Dvoynikov M.V., Buslaev G.V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020;244:428–438. https://doi.org/10.31897/PMI.2020.4.5
19. Пашкевич Н.В., Хлопонина В.С., Поздняков Н.А., Аверичева А.А. Анализ проблем воспроизводства минерально-сырьевой базы дефицитных стратегических полезных ископаемых. Записки Горного института. 2024;270:1004–1023. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16430 (дата обращения: 15.11.2024). Pashkevich N.V., Khloponina V.S., Pozdnyakov N.A., Avericheva A.A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals. Journal of Mining Institute. 2024;270:1004–1023. Available at: https://pmi.spmi.ru/pmi/article/view/16430 (accessed: 15.11.2024).
20. Авксентьев С.Ю., Махараткин П.Н., Александров В.И., Сафиуллин Р.Н. Определение удельных потерь напора при гидротранспорте хвостов Качканарского ГОКа. Обогащение руд. 2022;(3):45–50. https://doi.org/10.17580/or.2022.03.08 Avksentyev S.Yu., Makharatkin P.N., Safiullin R.N., Aleksandrov V.I. Specific pressure loss calculations for tailings hydrotransport at the Kachkanar GOK. Obogashchenie Rud. 2022;(3):45–50. (In Russ.) https://doi.org/10.17580/or.2022.03.08
21. Гафаров Ф.М., Галимянов А.Ф. Искусственные нейронные сети и приложения. Казань: Изд-во Казан. ун-та; 2018. 121 с.
22. Шарапов В.М., Полищук Е.С. (ред.) Датчики: Справочное пособие. М.: Техносфера; 2012. 624 с.