Tailings classification by hazard category
Ch.B. Kongar-Syuryun1 , M.A. Cherevko2, A.V. Dengaev3, S.V. Mustafaev4
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation
2 LLC “Nefteservisniye resheniya”, Saint Petersburg, Russian Federation
3 Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
4 National University of Science and Technology MISIS, Moscow, Russian Federation
Russian Mining Industry №3 / 2025 p. 80-84
Abstract: Dumping of tailings creates a risk of degradation to the ecosystem. Tailings mineralogy and geotechnical parameters will help to assess their environmental characteristics. The article presents a study of the mineralogical characterization of the tailings from a tailings dump in order to assess the impact on the environment. Samples for the investigation were collected from three tailing dumps of the following processing plants of the Ural Mining and Metallurgical Company (UMMC): Gayskaya; Buribayevskaya; Uchalinskaya. The samples were analyzed using X-ray radiography method in the laboratory of the Platov South Russian State Polytechnic University. As a result of the studies, it was established that tailings contain potentially toxic elements that have a negative impact on the soil layer within a radius of at least 200 meters. Presence of secondary minerals in tailings formed as a result of sulfide oxidation has been proven. A classification of tailings by the degree of potential hazard is presented.
Keywords: tailings, tailings dump, industrial waste, ecosystem, environment, mineralogical composition
For citation: Kongar-Syuryun Ch.B., Cherevko M.A., Dengaev A.V., Mustafaev S.V. Tailings classification by hazard category. Russian Mining Industry. 2025;(3):80–84. (In Russ.) https://doi.org/10.30686/1609-9192-2025-3-80-84
Article info
Received: 18.02.2025
Revised: 11.04.2025
Accepted: 11.04.2025
Information about the authors
Cheynesh B. Kongar-Syuryun – Postgraduate Student, Department of Mining, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-6097-905X; e-mail: kongarsiuiun@gmail.com
Mikhail A. Cherevko – Cand. Sci. (Eng.), General Director, LLC “Nefteservisniye resheniya”, Saint Petersburg, Russian Federation; e-mail: Cherevko.MiA@gazprom-neft.ru
Aleksey V. Dengaev – Cand. Sci. (Eng.), Associate Professor, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation; https://orcid.org/0000-0002-3378-6754; e-mail: dengaev.a@gubkin.ru
Sardor V. Mustafaev – Student, Mining Institute, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: sardor.mustafoyev.94@mail.ru
References
1. Тюляева Ю.С., Хайрутдинов А.М., Горелкина Е.И. Классификация георесурсов в парадигме их комплексного освоения. Горная промышленность. 2024;(6):140–143. https://doi.org/10.30686/1609-9192-2024-6-140-143 Tyulyaeva Y.S., Khayrutdinov A.M., Gorelkina E.I. Increasing Classification of georesources in the paradigm of their integrated development. Russian Mining Industry. 2024;(6):140–143. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-140-143
2. Максаров В.В., Минин А.О., Васильков Д.В. Применение высокочастотного волнового воздействия для технологического обеспечения качества расточных поверхностей изделий из коррозионностойких алюминиевых сплавов. Цветные металлы. 2025;(1):76–83. https://doi.org/10.17580/tsm.2025.01.11 Maksarov V.V., Minin А.О., Vasilkov D.V. The use of high-frequency wave action for technological quality assurance of boring surfaces of products made of corrosion-resistant aluminum alloys. Tsvetnye Metally. 2025;(1):76–83. (In Russ.) https://doi.org/10.17580/tsm.2025.01.11
3. Никитин В.И., Нечаева О.А., Живаева В.В. Программа для расчета объема фильтрата бурового раствора, проникающего в пласт при первичном вскрытии. Нефтяное хозяйство. 2022; (8):126–128. https://doi.org/10.24887/0028-2448-2022-8-126-128 Nikitin V.I., Nechaeva O.A., Zhivaeva V.V. Software for calculating the volume of drilling fluid filtrate penetrating into the reservoir during well completion. Neftyanoe Khozyaystvo. 2022; (8):126–128. (In Russ.) https://doi.org/10.24887/0028-2448-2022-8-126-128
4. Голик В.И., Гашимова З.А., Лискова М.Ю., Конгар-Сюрюн Ч.Б. К Проблеме минимизации объемов мобильной пыли при разработке карьеров. Безопасность труда в промышленности. 2021;(11):28–33. https://doi.org/10.24000/0409-2961-2021-11-28-33 Golik V.I., Gashimova Z.A., Liskova M.Yu., Kongar-Syuryun Ch.B. To the problem of minimizing the volume of mobile dust in the development of pits. Occupational Safety in Industry. 2021;(11):28–33. (In Russ.) https://doi.org/10.24000/0409-2961-2021-11-28-33
5. Соловьев С.В., Кузиев Д.А. Исследование жесткостных параметров привода тягового механизма драглайна ЭШ-10/70. Уголь. 2017;(1):37–38. Soloviev S.V., Kuziev D.A. Dragline ESH-10/70 linkage stiffness parameters study. Ugol’. 2017;(1):37–38. (In Russ.)
6. Ковальский Е.Р., Конгар-Сюрюн Ч.Б., Сиренко Ю.Г., Миронов Н.А. Моделирование реологических процессов деформирования несущих элементов камерной системы разработки для условий верхнекамского месторождения калийных солей. Устойчивое развитие горных территорий. 2024;16(3):1017–1030. https://doi.org/10.21177/1998-4502-2024-16-3-1017-1030 Kovalkiy E.R., Kongar-Syuryun Ch.B., Sirenko Yu.G., Mironov N.A. Modeling of rheological deformation processes for room and pillar mining at the Verkhnekamsk potash salt deposit. Sustainable Development of Mountain Territories. 2024;16(3):1017–1030. (In Russ.). https://doi.org/10.21177/1998-4502-2024-16-3-1017-1030
7. Тюляева Ю.С., Хайрутдинов А.М. Создание закладочного композита на основе отходов угольной промышленности. Уголь. 2024;(10):24–27. Режим доступа: https://ugolinfo.ru/artpdf/RU2410024.pdf (дата обращения: 25.02.2025). Tyulyaeva Yu.S.1, Khayrutdinov A.M. Creation of a backfill composite based on coal industry waste. Ugol’. 2024;(10):24–27. (In Russ.) Available at: https://ugolinfo.ru/artpdf/RU2410024.pdf (accessed: 25.02.2025).
8. Nikitin V.I. Nechaeva O.A., Mozgovoi G.S. Analysis of the results of the experiment to determine the saturation of the filtrate of drilling fluid of the core sample. AIP Conference Proceedings. 2021;2410:020014. https://doi.org/10.1063/5.0067566
9. Клементьева И.Н., Кузиев Д.А. Выемочно-погрузочный драглайн с ковшом инновационной конструкции. Горный информационно-аналитический бюллетень. 2019;(7):149–157. Режим доступа: https://giab-online.ru/files/Data/2019/7/149_157_7_2019.pdf (дата обращения: 13.02.2025). Klementyeva I.N., Kuziev D.A. Extracting-and-loading dragline with innovative design bucket. Mining Informational and Analytical Bulletin. 2019;(7):149–157. (In Russ.) Available at: https://giab-online.ru/files/Data/2019/7/149_157_7_2019.pdf (accessed: 13.02.2025).
10. Pshenin V.V. Determination of parameters of rational placement of oil and petroleum product vapor recovery unit. International Journal of Engineering. 2025;38(2):362–367. https://doi.org/10.5829/ije.2025.38.02b.10
11. Jastrzębska M., Kazimierowicz-Frankowska K., Chiaro G., Rybak J. New frontiers in sustainable geotechnics. Applied Sciences. 202;13(1):562. https://doi.org/10.3390/app13010562
12. Конгар-Сюрюн Ч.Б. Влияние шахтной воды на прочностные характеристики искусственного массива, созданного на основе техногенных отходов. Уголь. 2024;(12):75–78. Режим доступа: https://ugolinfo.ru/artpdf/RU2412075.pdf (дата обращения: 13.02.2025). Kongar-Syuryun Ch.B. Influence of mine water on the strength of artificial mass based on industrial waste. Ugol’. 2024;(12):75–78. (In Russ.) Available at: https://ugolinfo.ru/artpdf/RU2412075.pdf (accessed: 13.02.2025).
13. Nikitin V.I., Agrelkina M.M. Justification for the selection of a relative permeability model in the task of predicting drilling fluid filtrate invasion into the formation. International Journal of Engineering. 2025;38(10):2312–2320. https://doi.org/10.5829/ije.2025.38.10a.08
14. Алиева Л., Жуков И.А. Повышение эффективности ударно-поворотного бурения горных пород высокой крепости совершенствованием структуры породоразрушающего безлезвийного инструмента. Устойчивое развитие горных территорий. 2024;16(4):1681–1694. https://doi.org/10.21177/1998-4502-2024-16-4-1681-1694 Alieva L., Zhukov I.A. Upgrading rotary-percussion drilling of high - strength rocks by improving the structure of a rockcrushing blade-free tool. Sustainable Development of Mountain Territories. 2024;16(4):1681–1694. (In Russ.) https://doi.org/10.21177/1998-4502-2024-16-4-1681-1694
15. Nikitin V.I., Zhivaeva V.V., Mozgovoy G.S. Calculation of saturation and depth of filtrate penetration in the primary opening. In: Ashmarina S.I., Mantulenko V.V. (eds) Proceedings of the International Conference Engineering Innovations and Sustainable Development. Vol. 210. Cham: Springer; 2022, pp. 271–275. https://doi.org/10.1007/978-3-030-90843-0_30
16. Коршак А.А., Пшенин В.В. Моделирование выноса водных скоплений из нефтепроводов методами вычислительной гидродинамики. Нефтяное хозяйство. 2023;(10):117–122. https://doi.org/10.24887/0028-2448-2023-10-117-122 Korshak A.A., Pshenin V.V. Modeling of water slug removal from oil pipelines by methods of computational fluid dynamics. Neftyanoe Khozyaystvo. 2023;(10):117–122. (In Russ.) https://doi.org/10.24887/0028-2448-2023-10-117-122
17. Kravcov A., Dudchenko O.L., Svoboda P., Ivanov P.N., Sizikov M.V., Belov O.D., Gapeev A.A. Broadband ultrasonic pulse-echo method for estimation of local density of tungsten samples. Journal of Physics: Conference Series. 2019;1172:012064. https://doi.org/10.1088/1742-6596/1172/1/012064