Technologies for improving the accuracy of coordinate transfer through a vertical borehole in tunnel construction
Thanh Son Tran1, Thi Khuy Nguyen1, Manh Hung Tran 1, A.I. Shikhov2
1 Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
2 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation
Russian Mining Industry №3 / 2025 p. 52-56
Abstract: To justify the junction of oncoming tunnels satisfying the accuracy requirements, it is required to create an initial geodetic base in the tunnel. For this purpose, it is necessary to transfer coordinates, heights and azimuths of the reference geodetic network on the Earth's surface to the tunnel via vertical or inclined boreholes. In case the vertical boreholes are used, this is termed as orientation via vertical boreholes. When observing the verticality of the project in construction of large-size buildings, the traditional solutions have proved to be inefficient and in many cases inappropriate for the construction requirements. The article deals with the transfer of topocentric coordinates through a vertical borehole during tunnel construction and monitoring of vertical structures using the GNSS technology and topocentric coordinates. An example of implementation is shown at a particular site in Vietnam. The technical solution tested in the first metro line of Vietnam can be applied to similar types of operations. The following conclusions are made: 1 - the use of a laser device to replace the plumbing lines when transferring coordinates to the tunnel through vertical boreholes meets the technical requirements for tunnel construction; 2 - the topocentric coordinate system has very convenient characteristics for controlling the verticality of buildings using the GNSS technology data; 3 - the GNSS technology overcomes disadvantages of the conventional methods in determining the verticality of a building during construction, especially for multi-storey buildings.
Keywords: tunnel, vertical structures, underground excavations, topocentric coordinate system
For citation: Tran T.S., Nguyen T.K., Tran M.H., Shikhov A.I. Technologies for improving the accuracy of coordinate transfer through a vertical borehole in tunnel construction. Russian Mining Industry. 2025;(3):52–56. (In Russ.) https://doi.org/10.30686/1609-9192-2025-3-52-56
Article info
Received: 09.03.2025
Revised: 10.04.2025
Accepted: 11.04.2025
Information about the authors
Thanh Son Tran – Associate Professor, Department of Land and Real Estate Management, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam; https://orcid.org/0000-0003-2401-4274; e-mail: Ttson.ph@hunre.edu.vn
Thi Khuy Nguyen – Associate Professor, Department of Land and Real Estate Management, Hanoi University of Natural Resources and Environment, Vietnam; e-mail: ntkhuy@hunre.edu.vn
Manh Hung Tran – Associate Professor, Department of Information Technology in Land Resources Management, Hanoi University of Natural Resources and Environment, Vietnam; e-mail: Tmhung@hunre.edu.vn
Aleksander I. Shikhov – Cand. Sci. (Eng.), Assistant of the Department of Metrology, Instrumentation and Quality Management, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-8213-0989; e-mail: shikhov_ai@pers.spmi.ru
References
1. Линь Н.К., Динь Д.В., Габов В.В., Фук Л.К., Тханг Н.В. Повышение адаптируемости оборудования к демонтажу стоек рамной крепи в горной выработке. Уголь. 2024;(9):81–86. https://doi.org/10.18796/0041-5790-2024-9-81-86 Linh N.K., Dinh D.V., Gabov V.V., Phuk L.Q., Thang N.V. Enhancing the equipment adaptability for removing frame supports in the mine workings. Ugol’. 2024;(9):81–86. (In Russ.) https://doi.org/10.18796/0041-5790-2024-9-81-86
2. Malozyomov B.V., Martyushev N.V., Babyr N.V., Pogrebnoy A.V., Efremenkov E.A., Valuev D.V., Boltrushevich A.E. Modelling of reliability indicators of a mining plant. Mathematics. 2024;12(18):2842. https://doi.org/10.3390/math12182842
3. Linh N. K., Tien N.T., Luan D.C., Dinh D.V., Thang N.V. Enhancing efficiency of steel prop recovery processes in unused mining excavation. International Journal of Engineering. 2025;38(2):400–407. https://doi.org/10.5829/ije.2025.38.02b.14
4. Соловьев С.В., Кузиев Д.А. Исследование жесткостных параметров привода тягового механизма драглайна ЭШ-10/70. Уголь. 2017;(1):37–38. Soloviev S.V., Kuziev D.A. Dragline ESH-10/70 linkage stiffness parameters study. Ugol’. 2017;(1):37–38. (In Russ.)
5. Клементьева И.Н., Кузиев Д.А. Выемочно-погрузочный драглайн с ковшом инновационной конструкции. Горный информационно-аналитический бюллетень. 2019;(7):149–157. Режим доступа: https://giab-online.ru/files/Data/2019/7/149_157_7_2019.pdf (дата обращения: 13.02.2025). Klementyeva I.N., Kuziev D.A. Extracting-and-loading dragline with innovative design bucket. Mining Informational and Analytical Bulletin. 2019;(7):149–157. (In Russ.) Available at: https://giab-online.ru/files/Data/2019/7/149_157_7_2019.pdf (accessed: 13.02.2025).
6. Mustafin M., Nasrullah M., Abboud M. A comparative analysis of GNSS processing services for static measurements: evaluating accuracy and stability at different observation periods. International Journal of Geoinformatics. 2024;20(9):112– 121. https://doi.org/10.52939/ijg.v20i9.3553
7. Mustafin M.G., Nasrullah M. Estimating coordinates transformation parameters from global to local coordinates systems in lebanese republic based on zonal division. International Journal of Engineering. 2025;38(4):796–806. https://doi.org/10.5829/ije.2025.38.04a.11
8. Mustafin M., Nasrullah M., Abboud M. 3D modeling of Sidon sea castle utilizing terrestrial laser scanner combined with photogrammetry. International Journal of Geoinformatics. 2024;20(5):28–39. https://doi.org/10.52939/ijg.v20i5.3227
9. Babyr N.V. Topical themes and new trends in mining industry: Scientometric analysis and research visualization. International Journal of Engineering. 2024;37(2):439–451. https://doi.org/10.5829/ije.2024.37.02b.18
10. Wang K., Ye S., Gao P., Yao X., Zhao Z. Optimization of numerical methods for transforming UTM plane coordinates to lambert plane coordinates. Remote Sensing. 2022;14(9):2056. https://doi.org/10.3390/rs14092056
11. Son T.N. Optimization of the engineering surveys geodetic coordinate frame based on the Mercator projection use. E3S Web of Conferences. 2021;281:5001. https://doi.org/10.1051/e3sconf/202128105001
12. Son T.T., Kuzin A.A., Mustafin M.G. Development of a local quasigeoid model for Vietnam land area using the global EGM2008 model. Journal of Physics: Conference Series. 2019;1384:012056. https://doi.org/10.1088/1742-6596/1384/1/012056
13. Buddhika W., Premawansha K., Bandara T.R., Samaranayake L., Dayananda V., Mudannayaka C., Priyadarshani S. Revolutionizing spatial data analysis: unveiling a cutting-edge approach for batch coordinate transformation. Data Science and Management. 2023;6(4):214–226. https://doi.org/10.1016/j.dsm.2023.07.001
14. Pham Thi Hoa. The terrain effect in vertical deflection in the northwest and highlands mountainous areas. Journal of Science about Earth. 2012;34(1):92–96. (In Vietnam.).
15. Фомина Е. Е., Гуськов М. А., Медведев Д. А., Самыловская Е. А. Оценка степени вины участников несчастного случая в условиях Крайнего Севера. Горный информационно-аналитический бюллетень. 2024;(6):123–134. https://doi.org/10.25018/0236_1493_2024_6_0_123 Fomina E. Е., Guskov M. A., Medvedev D. A., Samylovskaya E. A. Evaluating degree of guilt of participants to an accident in the Extreme North conditions. Mining Informational and Analytical Bulletin. 2024;(6):123–134. (In Russ.) https://doi.org/10.25018/0236_1493_2024_6_0_123
16. Nguyen C.T., Do N.A., Dias D., Pham V.V., Gospodarikov A. Behaviour of square and rectangular tunnels using an improved finite element method. Applied Sciences. 2022;12(4):2050. https://doi.org/10.3390/app12042050
17. Nguyen T.T., Do N.A., Karasev M.A., Kien D.V., Dias D. Influence of tunnel shape on tunnel lining behaviour. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering. 2021;174(4):355–371. https://doi.org/10.1680/jgeen.20.00057
18. Nguyen T.T., Do N.A., Karasev M.A., Dias D., Dang V.K., Vilner M.A. Numerical investigation of the horseshoe tunnels structural behavior. Indian Geotechnical Journal. 2022;52(4):799–814. https://doi.org/10.1007/s40098-022-00618-y
19. Lebedev M.O., Karasev M.A., Belyakov N.A., Basova L.A. Face stability in heavy clay: Theory and practice. Journal of Mining Science. 2022;58(2):234–245. https://doi.org/10.1134/S1062739122020077
20. Nguyen C.T., Do N.A., Pham V.V., Nguyen P.T., Gospodarikov A. Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory anfis and artificial neural network ann. International Journal of GEOMATE. 2022;23(95):136–143. https://doi.org/10.21660/2022.95.3327
21. Nguyen C.T., Gospodarikov A. Hyperstatic reaction method for calculations of tunnels with horseshoe-shaped cross-section under the impact of earthquakes. Earthquake Engineering and Engineering Vibration. 2020;19(1):179–188. https://doi.org/10.1007/s11803-020-0555-0