Study of the effects of operational and design characteristics of diesel equipment on gas contamination in underground mine workings

DOI: https://doi.org/10.30686/1609-9192-2025-4-170-177

Читать на русскоя языкеS.G. Gendler1, A.S. Seregin2, P.A. Belekhov1
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation
2 NPI NEDRA LLC, Saint Petersburg, Russian Federation

Russian Mining Industry №4 / 2025 p. 170-177

Abstract: Excessive concentrations of harmful exhaust gas components from underground mining diesel vehicles with the internal combustion engines have a negative impact on the health of people working underground. Within the framework of this study we analyzed the dependence of the dilution efficiency of the exhaust gases from mining diesel underground machines equipped with the internal combustion engine on the location of the exhaust gas emission source in the underground mine using computer modeling. The main focus was on the effects of the exhaust pipe location and the engine load on these parameters. As a result of the analysis, a number of relationships were established between the fresh air flow rate and the exhaust gases emission for various exhaust pipe configurations of the diesel equipment. It is recommended to adhere to the ratio of the air to exhaust gas flow rates found as the result of this research depending on the location of the exhaust pipe of the diesel vehicle in order to improve the efficiency of ventilation in dead-end mine workings. The ratios found play a key part in developing solutions to improve the efficiency of the ventilation system, as well as to improve the safety and reduce the probability of negative effects of the exhaust gases on the health of people working underground.

Keywords: mine air, diesel-powered vehicles, mine diesel locomotives, exhaust gases, concentration of pollutants

For citation: Gendler S.G., Seregin A.S., Belekhov P.A. Study of the effects of operational and design characteristics of diesel equipment on gas contamination in underground mine workings. Russian Mining Industry. 2025;(4):170–177. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-170-177


Article info

Received: 19.04.2025

Revised: 05.06.2025

Accepted: 27.06.2025


Information about the authors

Semyon G. Gendler – Dr. Sci. (Eng.), Professor, Head of the Department of Production Safety, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-7721-7246; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr S. Seregin – Cand. Sci. (Eng.), Associate Professor, Deputy Director of NPI NEDRA LLC, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-2897-8604; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pavel A. Belekhov – Postgraduate Student, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Rudakov M.L., Kolvakh K.A., Derkach I.V. Assessment of environmental and occupational safety in mining industry during underground coal mining. Journal of Environmental Management and Tourism. 2020;11(3):579–588. https://doi.org/10.14505//jemt.v11.3(43).10

2. Sukhomlinov V., Matveev R., Mustafaev A., Timofeev N. Kinetic theory of low-voltage beam discharge instability in rare gases. Physics of Plasmas. 2020;27(6):062106. https://doi.org/10.1063/5.0001822

3. Chang P., Xu G., Zhou F., Mullins B., Abishek S., Chalmers D. Minimizing DPM pollution in an underground mine by optimizing auxiliary ventilation systems using CFD. Tunnelling and Underground Space Technology. 2019;87:112–121. https://doi.org/10.1016/j.tust.2019.02.014

4. Anisimov A., Chernyshkov I. The linearization method to calculate the equilibrium composition of combustion products of diesel engine. In: Guda A. (eds) Networked Control Systems for Connected and Automated Vehicles. NN 2022. Lecture Notes in Networks and Systems, vol 510. Springer, Cham; 2023, pp. 477–483. https://doi.org/10.1007/978-3-031-11051-1_47

5. Nel A.J., Vosloo J.C., Mathews M.J. Evaluating complex mine ventilation operational changes through simulations. Journal of Energy in Southern Africa. 2018;29(3):22–32. https://doi.org/10.17159/2413-3051/2018/v29i3a4445

6. Лиханов В.А., Лопатин О.П. Исследование токсичности дизельного двигателя при работе на различных альтернативных топливах. Двигателестроение. 2023;(2):54–61. Likhanov V.A., Lopatin O.P. Study of the internal combustion engine toxicity when working on various alternative fuels. Engines Construction. 2023;(2):54–61. (In Russ.)

7. Марчук Н.А., Таланова В.А., Куленцан А.Л. Анализ выбросов загрязняющих веществ различными источниками. Modern Science. 2022;(2-1):35–39. Marchuk N.A., Talanova V.A., Kulentsan A.L. Analysis of pollutant emissions from various sources. Modern Science. 2022; (2-1):35–39. (In Russ.)

8. Vinogradov E.A., Nikiforov A.V., Kochneva A.A. Computational fluid dynamics study of ventilation flow paths on longwall panel. International Journal of Civil Engineering and Technology. 2019;10(2):1140–1147.

9. Дашко Р.Э., Романов И.С. Прогнозирование горно-геологических процессов на основе анализа подземного пространства рудника Купол как многокомпонентной системы (Чукотский автономный округ, Анадырский р-н). Записки Горного института. 2021;247:20–32. https://doi.org/10.31897/PMI.2021.1.3 Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district). Journal of Mining Institute. 2021;247:20–32. https://doi.org/10.31897/PMI.2021.1.3

10. Козырева Е.Н., Шинкевич М.В. Особенности газогеомеханических процессов на выемочном участке шахты. Вестник Научного центра по безопасности работ в угольной промышленности. 2010;(2):28–35. Kozyreva E.N., Shinkevich M.V. Peculiar features of gas-geomechanical processes at a mine coal extraction section. Bulletin of Research Center for Safety in Coal Industry. 2010;(2):28–35. (In Russ.)

11. Corsini A., Marchegiani A., Rispoli F., Sciulli F., Venturini P. Vegetable oils as fuels in diesel engine. engine performance and emissions. Energy Procedia. 2015;81:942–949. https://doi.org/10.1016/j.egypro.2015.12.151

12. Корнев А. В., Спицын А. А., Займенцева Л. А., Зубко М. В. Исследование физико-химических свойств гидрогеля как средства пылевзрывозащиты и снижения запыленности в угольных шахтах. Горный информационно-аналитический бюллетень. 2023;(9-1):180–198. (In Russ.) https://doi.org/10.25018/0236_1493_2023_91_0_180. Kornev A.V., Spitsyn A.A., Zaimentseva L.A., Zubko M.V. Research of the physico-chemical properties of hydrogel as a means of dust-explosion protection and dust reduction in coal mines. Mining Informational and Analytical Bulletin. 2023;(9-1):180– 198. https://doi.org/10.25018/0236_1493_2023_91_0_180

13. Bestel D., Bayliff S., Marchese A., Olsen D., Windom B., Xu H. Multi-dimensional modeling of the CFR engine for the investigation of SI natural gas combustion and controlled end-gas autoignition. In: Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference. ASME 2020 Internal Combustion Engine Division Fall Technical Conference, November 4–6, 2020. V001T06A012. https://doi.org/10.1115/ICEF2020-2992

14. Kabanov E.I., Korshunov G.I., Magomet R.D. Quantitative risk assessment of miners injury during explosions of methanedust-air mixtures in underground workings. Journal of Applied Science and Engineering (Taiwan). 2021;24(1):105–110. https://doi.org/10.6180/jase.202102_24(1).0014

15. Balasubramanian D., Hoang A.T., Venugopal I.P., Shanmugam A., Gao J., Wongwuttanasatian T. Numerical and experimental evaluation on the pooled effect of waste cooking oil biodiesel/diesel blends and exhaust gas recirculation in a twin-cylinder diesel engine. Fuel. 2021;287:119815. https://doi.org/10.1016/j.fuel.2020.119815

16. Чеботарёв А.Г., Гибадулина И.Ю., Горячев Н.С. Загрязнение рудничной атмосферы при использовании самоходного оборудования с дизельным приводом и мероприятия по её нормализации. Горная промышленность. 2019;(2):74–76. https://doi.org/10.30686/1609-9192-2019-2-144-74-76 Chemotaryov A.G., Gibadulina I.Yu., Goryachev N.S. Contamination of mine air with exhaust gases of self/ propelled machinery and proposed corrective measures. Russian Mining Industry. 2019;(2):74–76. (In Russ.) https://doi.org/10.30686/1609-9192-2019-2-144-74-76

17. Коршунов Г.И., Еремеева А.M., Дребенштедт К. Обоснование применения растительной добавки к дизельному топливу в качестве способа защиты подземного персонала угольных шахт от воздействия вредных выбросов дизель-гидравлических локомотивов. Записки Горного института. 2021;247:39–47. https://doi.org/10.31897/PMI.2021.1.5 Korshunov G.I., Eremeeva A.M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives. Journal of Mining Institute. 2021;247:39–47. https://doi.org/10.31897/PMI.2021.1.5

18. Жихарев С.Я., Цыганков В.Д., Родионов В.А., Исаевич А.Г. Оптимизация процессов пылеподавления при ведении подземных горных работ на основе данных натурных экспериментов и моделирования в программе Ansys Fluent. Горный журнал. 2023;(11):70–75. https://doi.org/10.17580/gzh.2023.11.11 Zhikharev S.Ya., Tsygankov V.D., Rodionov V.A., Isaevich A.G. Optimization of dust suppression processes during underground mining based on full-scale experimentation and ANSYS Fluent simulation. Gornyi Zhurnal. 2023;(11):70–75. (In Russ.) https://doi.org/10.17580/gzh.2023.11.11

19. Rogers A., Davies B. Diesel particulates – recent progress on an old issue. The Annals of Occupational Hygiene. 2005;49(6):453– 456. https://doi.org/10.1093/annhyg/mei020

20. Davis M.E., Hart J.E., Laden F., Garshick E., Smith T.J. A retrospective assessment of occupational exposure to elemental carbon in the U.S. trucking industry. Environmental Health Perspectives. 2011;119(7):997–1002. https://doi.org/10.1289/ehp.1002981

21. Bickert S., Kampker A., Greger D. Developments of CO2-emissions and costs for small electric and combustion engine vehicles in Germany. Transportation Research Part D: Transport and Environment. 2015;36:138–151. https://doi.org/10.1016/j.trd.2015.02.004

22. Borak J., Bunn W.B., Chase G.R., Hall T.A., Head H.J., Hesterberg T.W. et al. Comments on the diesel exhaust in miners study. The Annals of Occupational Hygiene. 2011;55(3):339–342. https://doi.org/10.1093/annhyg/mer005

23. Гридина Е.Б., Боровиков Д.О. Повышение безопасности труда рабочего персонала карьера, расположенного в сложных горно-геологических условиях Крайнего Севера. Горный информационно-аналитический бюллетень. 2023;(9- 1):149-163. (In Russ.) https://doi.org/10.25018/0236_1493_2023_91_0_149 Gridina E.B., Borovikov D.O. Improving the safety of the working personnel of a quarry located in difficult mining and geological conditions of the Far North. Mining Informational and Analytical Bulletin. 2023;(9-1):149-163. https://doi.org/10.25018/0236_1493_2023_91_0_149

24. Гендлер С.Г., Братских А.С. Актуальные проблемы возгорания угольных скоплений в породных отвалах. Горная промышленность. 2024;(5S):71–77. https://doi.org/10.30686/1609-9192-2024-5S-71-77 Gendler S.G., Bratskih A.S. Actual problems of coal accumulations ignition in rock dumps. Russian Mining Industry. 2024;(5S):71–77. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-71-77

25. Семин М.А., Гришин Е.Л., Левин Л.Ю., Зайцев А.В. Автоматизированное управление вентиляцией шахт и рудников. Проблемы, современный опыт, направления совершенствования. Записки Горного института. 2020;246:623–632. https://doi.org/10.31897/PMI.2020.6.4 Semin M.A., Grishin E.L., Levin L.Y., Zaitsev A.V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020;246:623–632. https://doi.org/10.31897/PMI.2020.6.4

26. Серёгин А.С., Иконников Д.А., Белехов П.А. К вопросу организации защиты систем аэрогазового контроля шахты от ложных срабатываний при работе дизельного технологического оборудования. Транспортное, горное и строительное машиностроение: наука и производство. 2024;(27):77–81. https://doi.org/10.26160/2658-3305-2024-27-77-81 Seregin A.S., Ikonnikov D.A., Belekhov P.A. On the issue of organizing protection of the mine’s aerogas control system from false alarms during the operation of diesel technological equipment. Transport, Mining and Construction Engineering: Science and Production. 2024;(27):77–81. (In Russ.) https://doi.org/10.26160/2658-3305-2024-27-77-81

27. Park J., Park S., Lee D.-K. CFD modeling of ventilation ducts for improvement of air quality in closed mines. Geosystem Engineering. 2016;19(4):177–187. https://doi.org/10.1080/12269328.2016.1164090

28. Кашников А.В., Круглов Ю.В. Стратегия управления проветриванием рудника в оптимальном режиме с использованием аппарата нечеткой логики. Записки Горного института. 2023;262:594–605. https://doi.org/10.31897/PMI.2022.75 Kashnikov A.V., Kruglov Y.V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers. Journal of Mining Institute. 2023;262:594–605. https://doi.org/10.31897/PMI.2022.75

29. Левин Л.Ю., Зайцев А.В., Гришин Е.Л., Семин М.А. Расчет количества воздуха по содержанию кислорода для проветривания рабочих зон при применении машин с двигателями внутреннего сгорания. Безопасность труда в промышленности. 2015;(8):43–46. Levin L.Yu., Zaitsev A.V., Grishin E.L., Semin M.A. Calculation of air quantity on oxygen content for ventilation of the working areas when using machines with internal-combustion engine. Occupational Safety in Industry. 2015;(8):43–46. (In Russ.)

30. Benbrahim-Tallaa L., Baan R.A., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V. et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. The Lancet Oncology. 2012;13(7):663–664. https://doi.org/10.1016/s1470-2045(12)70280-2

31. Кречманн Ю., Плиен М., Нгуен Т.Х.Н., Рудаков М.Л. Эффективное наращивание потенциала в горном деле за счет обучения, расширяющего возможности в области управления охраной труда. Записки Горного института. 2020;242:248– 256. https://doi.org/10.31897/PMI.2020.2.248 Kretschmann J., Plien M., Nguyen T.H.N., Rudakov M.L. Effective capacity building by empowerment teaching in the field of occupational safety and health management in mining. Journal of Mining Institute. 2020;242:248–256. https://doi.org/10.31897/PMI.2020.2.248

32. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994;32(8):1598–1605. https://doi.org/10.2514/3.12149

33. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer. 2003;4(1):625–632.

34. Mohammadi B., Pironneau O. Analysis of the K-Epsilon Turbulence Model. Masson. Saint-Jean-de-Monts, France; 1994. 205 p. 35. Camelli F.E., Byrne G., Löhner R. Modeling subway air flow using CFD. Tunnelling and Underground Space Technology. 2014;43:20–31. https://doi.org/10.1016/j.tust.2014.02.012