An integrated approach to designing an automated processing system for Big Data on the haulage process by transport vehicles

DOI: https://doi.org/10.30686/1609-9192-2025-4-122-129

Читать на русскоя языкеR.N. Safiullin1, M.S. Prisyazhnyuk2, A.Z. Parra1, R.R. Safiullin1, А.А. Ungefuk1
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation
2 Leningrad Region Transport Committee, St. Petersburg, Russian Federation

Russian Mining Industry №4 / 2025 p. 122-129

Abstract: The article discusses the issues of assessing the haulage efficiency by mining dump trucks using an algorithm for an automated system to process Big Data collected from sensors and GLONASS/GPS-based devices mounted on the vehicles in real time mode. Techniques are proposed to reduce the time required for on-line data processing and analysis, including the design of distributed processing infrastructure, real-time optimization algorithms, and machine learning methods for managing and analyzing the data from sensors, GPS systems and other intelligent devices of the vehicles. The developed algorithm to process Big Data of the haulage process takes into account the collection, storage, analysis, visualization of the data as well as a structural model for determining the technical and operational performance indicators of the haulage process, i.e. the delivery time, vehicle load factor, volume of cargo transported, mileage utilization factor, fuel consumption, idle time and availability factor.

Keywords: automated system, Big Data processing algorithm, assessment of the haulage process, mining dump trucks

For citation: Safiullin R.N., Prisyazhnyuk M.S., Parra A.S. Safiullin R.R., Ungefuk А.А. An integrated approach to designing an automated processing system for Big Data on the haulage process by transport vehicles. Russian Mining Industry. 2025;(4):122– 129. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-122-129


Article info

Received: 16.04.2025

Revised: 05.06.2025

Accepted: 16.06.2025


Information about the authors

Ravill N. Safiullin – Dr. Sci. (Eng.), Professor, Professor of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-8765-6461; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Michael S. Prisyazhnyuk – Cand. Sci. (Eng.), Chairman of the Leningrad Region Transport Committee, St. Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Arias Zunilda Parra – Postgraduate Studentof the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0003-1715-7998; email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ruslan R. Safiullin – Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0003-2315-3678; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr A. Ungefuk – Cand. Sci. (Eng.), Associate Professor Associate Professor of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0003-1473-9095; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Fernandes A.X., Guimarães P., Santos M.Y. Big Data analytics for vehicle multisensory anomalies detection. Procedia Computer Science. 2022;204:817–824. https://doi.org/10.1016/j.procs.2022.08.099

2. Nuzzolo A., Comi A., Polimeni A. Urban freight vehicle flows: an analysis of freight delivery patterns through floating car data. Transportation Research Procedia. 2020;47:409–416. https://doi.org/10.1016/j.trpro.2020.03.116

3. Гендлер С.Г., Степанцова А.Ю., Попов М.М. Обоснование безопасной эксплуатации закрытого угольного склада по газовому фактору. Записки Горного института. 2024:1–11. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16519 (дата обращения: 12.11.2024). Gendler S.G., Stepantsova A.Y., Popov M.M. Justification on the safe exploitation of closed coal warehouse by gas factor. Journal of Mining Institute. 2024:1–11. Available at: https://pmi.spmi.ru/pmi/article/view/16519 (accessed: 12.11.2024).

4. R. N. Safiullin, R. R. Safiullin, K. V. Sorokin [et al.] Integral Assessment of Influence Mechanism of Heavy Particle Generator on Hydrocarbon Composition of Vehicles Motor Fuel / R. N. Safiullin, R. R. Safiullin, K. V. Sorokin [et al.] // International Journal of Engineering. – 2024. – Vol. 37, No. 8. – P. 1700-1706. – DOI 10.5829/ije.2024.37.08b.20. – EDN NHRCBX.

5. Tian, H. Integral Evaluation of Implementation Efficiency of Automated Hardware Complex for Vehicle Traffic Control / H. Tian, R. N. Safiullin, R. R. Safiullin // International Journal of Engineering. – 2024. – Vol. 37, No. 8. – P. 1534-1546. – DOI 10.5829/ ije.2024.37.08b.07. – EDN PVMCUB.

6. Жуковский Ю.Л., Сусликов П.К. Оценка потенциального эффекта применения технологии управления спросом на горных предприятиях. Устойчивое развитие горных территорий. 2024;16(3):895–908. https://doi.org/10.21177/1998-4502-2024-16-3-895-908 Zhukovsky Yu.L., Suslikov P.K. Assessment of the potential effect of applying demand management technology at mining enterprises. Sustainable Development of Mountain Territories. 2024;16(3):895–908. https://doi.org/10.21177/1998-4502-2024-16-3-895-908

7. Sahin O., Stinson M., Ismael A., Shen H. Analysis of urban freight flows and retail goods movement using GPS trajectory and land use data. Procedia Computer Science. 2024;238:809–814. https://doi.org/10.1016/j.procs.2024.06.096

8. Габдулхаков Р.Р., Говкелевич К.Ю., Рудко В.А., Пягай И.Н. Метод повышения детонационной стойкости автомобильного бензина на основе компонента, полученного в процессе производства игольчатого кокса. Горная промышленность. 2025;(1S):21–27. https://doi.org/10.30686/1609-9192-2025-1S-21-27. R.R. Gabdulkhakov, K.Yu. Govkelevich, V.A. Rudko, I.N. Pyagayn A process to increase the detonation resistance of motor gasoline using a component obtained during needle coke production. Russian Mining Industry. 2025;(1S):21–27. https://doi.org/10.30686/1609-9192-2025-1S-21-27

9. Мякотных А.А., Иванова П.В., Иванов С.Л. К вопросу классификации комплексов добычи торфяного сырья. Горная промышленность. 2023;(6):137–142. https://doi.org/10.30686/1609-9192-2023-6-137-142 Myakotnykh A.A., Ivanova P.V., Ivanov S.L. On classification of peat extraction complexes. Russian Mining Industry. 2023;(6):137–142. (In Russ.) https://doi.org/10.30686/1609-9192-2023-6-137-142

10. Barjoee S.S., Rodionov V.A. Respirable dust in ceramic industries (Iran) and its health risk assessment using deterministic and probabilistic approaches. Pollution. 2024;10(4):1206–1226. https://doi.org/10.22059/poll.2024.376043.2360

11. Emelyanov A.A., Avksentieva E.Yu., Avksentiev S.Yu., Zhukov N.N. Applying neurointerface for provision of information security. International Journal of Advanced Trends in Computer Science and Engineering. 2019;8(6):3277–3281. https://doi.org/10.30534/ijatcse/2019/97862019

12. Tarazona-Torre L., Amaya C., Paipilla A., Gomez C., Alvarez-Martinez D. The parallel machine scheduling problem with different speeds and release times in the ore hauling operation. Algorithms. 2024;17(8):348. https://doi.org/10.3390/a17080348

13. Великанов В.С. Прогнозирование нагруженности рабочего оборудования карьерного экскаватора по нечетко-логистической модели. Записки Горного института. 2020;241:29–36. https://doi.org/10.31897/pmi.2020.1.29 Velikanov V.S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model. Journal of Mining Institute. 2020;241:29–36. https://doi.org/10.31897/pmi.2020.1.29

14. Semenova T., Martínez Santoyo J.Y. Increasing the sustainability of the strategic development of oil producing companies in Mexico. Resources. 2024;13(8):108. https://doi.org/10.3390/resources13080108

15. Мустафаев А.С., Сухомлинов В.С., Бажин В.Ю., Буковецкий Н.А., Суров А.В. Плазменная технология получения сверхчистого корунда. Цветные металлы. 2024;(4):21–29. https://doi.org/10.17580/tsm.2024.04.03 Mustafaev А.S., Sukhomlinov V.S., Bazhin V.Yu., Bukovetskiy N.A., Surov А.V. Plasma technology for producing ultrapure corundum. Tsvetnye Metally. 2024;(4):21–29. (In Russ.) https://doi.org/10.17580/tsm.2024.04.03

16. Курганов В.М., Грязнов М.В., Колобанов С.В. Оценка надежности функционирования экскаваторно-автомобильных комплексов в карьере. Записки Горного института. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10 Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10

17. Kuznetsov D., Kosolapov A. Dynamic of performance of open-pit dump trucks in ore mining in severe climatic environment. Transportation Research Procedia. 2022;63:1042–1048. https://doi.org/10.1016/j.trpro.2022.06.104

18. Салимов А.Э., Шибанов Д.А., Иванов С.Л. Риски отказов карьерного экскаватора, связанные с его техническим обслуживанием и ремонтом. Горная промышленность. 2024;(2):97–102. https://doi.org/10.30686/1609-9192-2024-2-97-102 Salimov A.E., Shibanov D.A., Ivanov S.L. Failure risks of mine excavator associated with its maintenance and repair. Russian Mining Industry. 2024;(2):97–102. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-97-102

19. Barjoee S.S., Rodionov V., Vaziri Sereshk A.M. Noise climate assessment in ceramic industries (Iran) using acoustic indices and its control solutions. Advances in Environmental Technology. 2025;11(1):91–115. https://doi.org/10.22104/aet.2024.6922.1899

20. Ikotun A.M., Ezugwu A.E., Abualigah L., Abuhaija B., Heming J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences. 2023;622:178–210. https://doi.org/10.1016/j.ins.2022.11.139

21. Кортиев А.Л., Хасцаев Б.Д., Кортиев А.А. Метод мониторинга и достоверного прогнозирования возникновения оползней дорог на основе цифрового устройства. Горная промышленность. 2025;(1S):47–54. https://doi.org/10.30686/1609-9192-2025-1S-47-54 . Kortiev A.L., Khastsaev B.D., Kortiev A.A. A method to monitor and reliably predict emergence of road landslides using a digital device. Russian Mining Industry. 2025;(1S):47–54.

22. Safiullin R, Arias Z. Comprehensive Assessment of the Effectiveness of Passenger Transportation Processes using Intelligent Technologies . Open Transp J, 2024; 18: e26671212320514. http://dx.doi.org/10.2174/0126671212320514240611100437

23. Сафиуллин Р.Р., Симонова Л.А. Научные основы повышения эффективности внедрения интегрированных интеллектуальных технологий в транспортно-технологический процесс доставки грузов. Горная промышленность. 2025;(1S):55–61. https://doi.org/10.30686/1609-9192-2025-1S-55-61 Safiullin R.R., Simonova L.A. Scientific foundations for increasing the efficiency of the implementation of integrated intelligent technologies in the transport and technological process of cargo delivery. Russian Mining industry. 2025;(1S):55– 61. https://doi.org/10.30686/1609-9192-2025-1S-55-61