Assessment of the rock burst probability in the bottom part of the Krasivoye deposit

DOI: https://doi.org/10.30686/1609-9192-2025-4S-116-121

Читать на русскоя языкеM.I. Potapchuk , A.V. Sidlyar, A.A. Burdinskaya, М.A. Lomov
Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation

Russian Mining Industry №4S / 2025 p. 116-121

Abstract: When mineral deposits are mined using underground methods, rock burst hazards arise as the depth increases. The experience of developing such deposits shows that when mining operations reach ‘critical depths,’ technological processes begin to be accompanied by sudden failures of the ore and rock masses in the most dangerous dynamic forms, i.e. as the rock bursts and bumps as well as tectonic shocks. This paper presents the results of assessing the geomechanical condition of the Krasivoe deposit to ensure safe mining operations and prevent dynamic manifestations of the rock pressure. This gold deposit is located in the north-western part of the Ayano-Maisky administrative district of the Khabarovsk Territory, and its reserves are currently mined almost completely out to the level of +850 m (the depth of 350 m). In the near and medium term, it is planned to develop the reserves in the bottom part of the deposit to the level of +615 m (the depth of 585 m from the surface). Based on a combination of factors and the results of comprehensive studies, as well as data from field observations and instrumental measurements in the mine workings, the Krasivoe deposit needs to be classified as prone to rock bursts below the depth of 350 m (+850 m level).

Keywords: geomechanics, impact hazard, manifestations of rock pressure, tectonics, rock mass, stress-and-strain state, mining method, geodynamic processes

For citation: Potapchuk M.I., Sidlyar A.V., Burdinskaya A.A., Lomov M.A. Assessment of the rock burst probability in the bottom part of the Krasivoye deposit. Russian Mining Industry. 2025;(4S):116–121. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-116-121


Article info

Received: 04.07.2025

Revised: 18.08.2025

Accepted: 25.08.2025


Information about the author

Marina I. Potapchuk – Cand. Sci. (Eng.), Leading Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-3769-243X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexander V. Sidlyar – Cand. Sci. (Eng.), Senior Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-9619-4334; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alena A. Burdinskaya – Postgraduate Student, Senior Engineer, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0009-0009- 1466-7758; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mikhail A. Lomov – Junior Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Аксенов А.А., Ожиганов И.А. Совершенствование практики отнесения месторождений к склонным по горным ударам. Безопасность труда в промышленности. 2018;(1):58–60. https://doi.org/10.24000/0409-2961-218-1-58-60 Aksenov A.A., Ozhiganov I.A. Improving the Practice of Deposits Referring to Prone to Rock-Bumps. Occupational Safety in Industry. 2018;(1):58–60. (In Russ.) https://doi.org/10.24000/0409-2961-218-1-58-60

2. Тюпин В.Н. Оценка критической глубины месторождений по условию удароопасности. Записки Горного института. 2019;236:167–171. https://doi.org/10.31897/PMI.2019.2.167Tyupin V.N. Estimation of critical depth of deposits by rock bump hazard condition. Journal of Mining Institute. 2019;236:167–171. https://doi.org/10.31897/PMI.2019.2.167

3. Фрейдин А.М., Неверов С.А., Неверов А.А., Конурин А.И. Геомеханическая оценка геотехнологий подземной добычи руд на стадии проектных решений. Горный журнал. 2016;(2):39–45. https://doi.org/10.17580/gzh.2016.02.08Freidin A.M., Neverov S.A., Neverov A.A., Konurin A.I. Geomechanical assessment of geotechnology at a project stage of underground ore mining. Gornyi Zhurnal. 2016;(2):39–45. (In Russ.) https://doi.org/10.17580/gzh.2016.02.08

4. Куранов А.Д. Применение численного моделирования для выбора безопасных параметров систем разработки рудных месторождений в высоконапряженных массивах. Записки Горного института. 2013;206:60–64. Режим доступа: https://pmi.spmi.ru/pmi/article/view/5437 (дата обращения: 05.05.2025).Kuranov A.D. Application of numerical modeling for design of safety paramters of safety mining method in highly stressed masses. Journal of Mining Institute. 2013;206:60–64. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/5437 (accessed: 05.05.2025).

5. Braun L.G. Seismic hazard evaluation using apparent stress ratio for mining-induced seismic events. Ph. D. Thesis. Laurentian University; 2015. 257 p.

6. Ingraham M.D., Issen K.A., Holcomb D.J. Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses. Acta Geotechnica. 2013;8(6):645–663. https://doi.org/10.1007/s11440-013-0275-y

7. Marcak H., Mutke G. Seismic activation of tectonic stresses by mining. Journal of Seismology. 2013;17(4):1139–1148. https://doi.org/10.1007/s10950-013-9382-3

8. Snelling P.E., Godin L., McKinnon S.D. The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada. International Journal of Rock Mechanics and Mining Sciences. 2013;58:166–179. https://doi.org/10.1016/j.ijrmms.2012.10.005

9. Wang N., Wan B.H., Zhang P., Du X.L. Analysis on deformation development of open-pit slope under the influence of underground mining. In: Hu Z. (ed.) Legislation, Technology and Practice of Mine Land Reclamation: Proceedings of the Beijing International Symposium on Land Reclamation and Ecological Restoration (LRER 2014), Beijing, China, 16–19 October 2014. London: CRC Press; 2014. https://doi.org/10.1201/b17500-11

10. Рассказов И.Ю. Контроль и управление горным давлением на рудниках Дальневосточного региона. М.: Горная книга; 2008. 328 с.

11. Рассказов И.Ю., Потапчук М.И., Осадчий С.П., Потапчук Г.М. Геомеханическая оценка применяемых технологий разработки удароопасных месторождений ОАО «ГМК «Дальполиметалл». Горный информационно-аналитический бюллетень. 2010;(7):137–145.Rasskazov I.Yu., Potapchuk M.I., Osadchii S.P., Potapchuk G.M. Geomechanical assessment of the technologies used in development of rock-burst hazardous deposits of MMC Dalpolymetal JSC. Mining Informational and Analytical Bulletin. 2010;(7):137–145. (In Russ.)

12. Потапчук М.И., Терешкин А.А., Рассказов М.И. Оценка геомеханического состояния массива горных пород при отработке сложноструктурных рудных тел системой подэтажными штреками с управляемым обрушением кровли. Горный информационно-аналитический бюллетень. 2015;(12):39–45.Potapchuk M.I., Tereshkin A.A., Rasskazov M.I. Assessment of geomechanical condition of rock massif in the process of development of difficult-structured ore bodies by the sublevel drifts system with the controlled roof caving. Mining Informational and Analytical Bulletin. 2015;(12):39–45. (In Russ.)

13. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра; 1987. 221 с. Режим доступа: https://www.geokniga.org/books/16260 (дата обращения: 05.05.2025).

14. Зотеев О.В. Научные основы расчета конструктивных параметров систем подземной разработки руд с учетом структуры массива и порядка ведения горных работ [дис. … д-ра техн. наук]. Екатеринбург; 1999. 261 с.

15. Криницын Р.В. Напряженно-деформированное состояние массива горных пород при отработке месторождений Урала. Горная промышленность. 2022;(5):79–82. https://doi.org/10.30686/1609-9192-2022-5-79-82Krinitsyn R.V. Stress-and-strain state of the rock mass in mining deposits in the Urals. Russian Mining Industry. 2022;(5):79–82. (In Russ.) https://doi.org/10.30686/1609-9192-2022-5-79-82