GPR models of the rock mass of the placer gold deposits in the temperate climatic zone of Yakutia

DOI: https://doi.org/10.30686/1609-9192-2025-4S-87-93

Читать на русскоя языкеL.L. Fedorova , G.A. Kulyandin, S.D. Shamaeva
Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation

Russian Mining Industry №4S / 2025 p. 87-93

Abstract: Physical-geological modeling supports the development of field ground penetrating radar (GPR) methods, selection of data processing techniques, and identification of interpretative features in the GPR wave patterns. GPR models of the upper part of the rock mass in the placer gold deposits located in the temperate zone were developed based on an analysis of the geological and mining conditions of the Allah-Yun River, the Bolshoy Kuranakh River, and the Muravyevsky Stream deposits, as well as data of the integrated geophysical surveys conducted along the main gas pipeline in southern Yakutia. The resulting models represent a horizontally homogeneous environment of loose sediments typical of a frozen dredge pit, a dredge pit under Summer conditions, and frozen loose sediments containing a layer of ice-rich rocks. Analysis of the built models of the rock mass at the dredge site showed that the results of the GPR survey are significantly affected by the presence of water bodies due to decreased velocity of electromagnetic wave propagation in water. The presence of an ice cover in winter time also causes a lot of interference in the form of multiple signal reflections due to the high dielectric contrast of the ice-water boundary. All of these make data processing difficult and requires the development of dedicated methods to perform the GPR surveys as well as new approaches to processing the data collected at the test site.

Keywords: placer deposits, dredge pit, ground penetrating radar, GPR, GPR models of rock mass, radargram, wave pattern, electrophysical properties of rocks

Acknowledgements: The study was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Topic No. 0297-2021-0020, EGISU NIOCTR No.122011800086-1) using instruments that belong to the Shared core facilities of the Federal Research Center, Yakutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences.

For citation: Fedorova L.L., Kulyandin G.A., Shamaev S.D. GPR models of the rock mass of the placer gold deposits in the temperate climatic zone of Yakutia. Russian Mining Industry. 2025;(4S):87–93. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-87-93


Article info

Received: 02.07.2025

Revised: 13.08.2025

Accepted: 21.08.2025


Information about the authors

Larisa L. Fedorova - Cand. Sci. (Eng.), Leading Researcher, GPR Laboratory, N.V. Chersky Mining Institute of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; https://orcid.org/0000-0002-5002-6140; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.;

Gavril A. Kulyandin – Cand. Sci. (Eng.), Senior Researcher, N.V. Chersky Mining Institute of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; https://orcid.org/0000-0001-7029-0777; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Semen Shamaev – Senior Engineer, GPR Laboratory, N.V. Chersky Mining Institute of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; https://orcid.org/0009-0006-5542-2632; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Рыскин М.И. Физико-геологическое моделирование как основа геологической интерпретации комплекса геофизических данных. Известия Саратовского университета. Новая серия. Серия Науки о Земле. 2014;14(1):87–96. https://doi.org/10.18500/1819-7663-2014-14-1-87-96Riskin M.I. Physical and geological modeling as a basis of geological interpretation of geophysical data complex. Izvestiya of Saratov University. Earth Sciences. 2014;14(1):87–96. (In Russ.) https://doi.org/10.18500/1819-7663-2014-14-1-87-96

2. Страхов В.Н. Основные идеи и методы извлечения информации из данных гравитационных и магнитных наблюдений. В кн.: Кузиванов В.А. (ред.) Теория и методика интерпретации гравитационных и магнитных аномалий. М.: ИФЗ; 1979. С. 146–269.

3. Calcara M., Caricaterra M. CO2 dipole moment: A simple model and its implications for CO2-rock interactions. Minerals. 2023;13(1):87. https://doi.org/10.3390/min13010087

4. Lopes J.A.G., Medeiros W.E., Oliveira J.G., Santana F.L., Araújo R.E.B., Bruna V. et al. Three-dimensional characterization of karstic dissolution zones, fracture networks, and lithostratigraphic interfaces using GPR cubes, core logs, and petrophysics: Implications for thief zones development in carbonate reservoirs. Marine and Petroleum Geology. 2023;150:106126. https://doi.org/10.1016/j.marpetgeo.2023.106126

5. Ермаков С.А., Бураков А.М., Заудальский И.И., Панишев С.В Совершенствование геотехнологий открытой разработки месторождений Севера. Якутск: Изд-во СО РАН; 2004. 370 с.

6. Федорова Л.Л., Соколов К.О., Прудецкий Н.Д., Шамаев С.Д. Георадиолокационные модели массива горных пород субарктической зоны Якутии. Горный информационно-аналитический бюллетень. 2023;(12-2):129–140. https://doi.org/10.25018/0236_1493_2023_122_0_129Fedorova L.L., Sokolov K.O., Prudetskii N.D., Shamaev S.D. GPR models of rock massif of the subarctic zone of the Yakutia. Mining Informational and Analytical Bulletin. 2023;(12-2):129–140. (In Russ.) https://doi.org/10.25018/0236_1493_2023_122_0_129

7. Лещанский Ю.И., Дробышев А.И. Электрические параметры песчано-глинистых грунтов в диапазоне УКВ и СВЧ в зависимости от влажности и температуры. М.: Информсоюз; 1995. 26 с.

8. Martel R., Castellazzi P., Gloaguen E., Trépanier L., Garfias J. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City. Geomorphology. 2018;310:45–56. https://doi.org/10.1016/j.vgeomorph.2018.03.003

9. Alfuqara D., Anderson N. Geophysical site assessment of soil and the rock structure in karst terrain using 2D and 3D mapping of noninvasive electrical resistivity tomography – southwestern of MO, USA. Arabian Journal of Geosciences. 2023;16:103. https://doi.org/10.1007/s12517-023-11196-5

10. Нерадовский Л.Г. Прогноз диэлектрической проницаемости по электрическому сопротивлению песчаников южной Якутии. Геофизика. 2025;(2):40–48. https://doi.org/10.34926/geo.2025.27.16.006Neradovskii L.G. Prediction of dielectric constant by electrical resistance of sandstones of South Yakutia. Geophysics Journal. 2025;(2):40–48. (In Russ.) https://doi.org/10.34926/geo.2025.27.16.006

11. Федорова Л.Л., Фёдоров М.П., Свинобоев А.С. Физическое моделирование георадиолокационного мониторинга криогенных процессов в массиве рыхлых горных пород. Успехи современного естествознания. 2024;(11):106–111. https://doi.org/10.17513/use.38340Fedorova L.L., Fedorov M.P., Svinoboev A.S. Physical modeling of gpr monitoring of cryogenic processes in a loose rock massif. Advances in Current Natural Sciences. 2024;(11):106–111. (In Russ.) https://doi.org/10.17513/use.38340

12. Федорова Л.Л., Куляндин Г.А. Опыт применения метода георадиолокации при эксплуатационной разведке россыпных месторождений золота Якутии. Успехи современного естествознания. 2018;(11-1):160–165. tps://doi.org/10.17513/use.36921Fedorova L.L., Kulyandin G.A. Experience in applying the gpr method in the exploration of placer gold deposits of Yakutia. Advances in Current Natural Sciences. 2018;(11-1):160–165. (In Russ.) tps://doi.org/10.17513/use.36921

13. Savvin D.V., Fedorova L.L., Kulyandin G.A., Soloviev E.E. GPR studies of the permafrost conditions of the main pipeline area in Western Yakutia. In: 17th conference and exhibition engineering and mining geophysics 2021, Gelendzhik, April 26–30, 2021. European Association of Geoscientists & Engineers; 2021, pp. 1–5. https://doi.org/10.3997/2214-4609.202152087

14. Majchrowska S., Giannakis I., Warren C., Giannopoulos A. Modelling arbitrary complex dielectric properties – an automated implementation for gprMax. In: 2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Valletta, Malta, December 1–4, 2021. IEEE; 2021, pp. 1–5. https://doi.org/10.1109/IWAGPR50767.2021.9843152