Structure of an electrochemically activated water film on the pyrite surface
K.V. Prokhorov1, M.A. Chibisova1, A. Srivastava2
1 Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation
2 Indian Institute of Information Technology and Management, Gwalior, India
Russian Mining Industry №4S / 2025 p. 63-67
Abstract: The objective of this research was to perform experimental and theoretical studies to gain a detailed insight into the kinetics of the FeS2 particle attachment to the surface of the air bubbles and to explore the possibility of intensifying the FeS2 particle attachment in the elementary flotation process through electrochemical activation of the solutions. This study modeled the molecular structure of the water films on the pyrite (100) surface using the density functional theory (DFT) to investigate the effects of hydronium ions on the surface bonding interactions. Adding hydronium ions to the water films weakens the Fe–O interaction, increases the Fe–O bond distance from 2.145 to 3.245 Å and, consequently, reduces the hydrogen bonding among the water molecules within the 5.5 Å range of the FeS2 surface. Molecular dynamics simulations further revealed the proton transfer dynamics from the subsurface to the upper water layers, aligning with experimental observations of the kinetics of pyrite particle attachment to the air bubbles. Electrochemical activation of the sodium bicarbonate solution enhanced the pyrite particle loading on the bubbles by up to 32% compared to the non-activated solution
Keywords: pyrite, flotation, density functional theory, molecular dynamics, interfacial water
Acknowledgments: The research was financially supported by a grant from the Russian Science Foundation No. 24-27-20084, https://rscf.ru/project/24-27-20084/ and a grant in the form of subsidies from the regional budget of the Khabarovsk Territory (Agreement No. 110С/2024 as of July 31, 2024)
For citation: Prokhorov K.V., Chibisova M.A., Srivastava A. Structure of an electrochemically activated water film on the pyrite surface. Russian Mining Industry. 2025;(4S):63–67. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-63-67
Article info
Received: 02.07.2025
Revised: 13.08.2025
Accepted: 19.08.2025
Information about the authors
Konstantin V. Prokhorov – Cand. Sci. (Eng.), Leading Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0003-4569-1928; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Mary A. Chibisova – Cand. Sci. (Phys. & Math.), Leading Researcher, Data-Processing Center, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation;
Anurag Srivastava – Ph.D., Professor, Advanced Materials Research Group, CNT Lab, ABV – Indian Institute of Information Technology and Management, Gwalior, Madhya Pradesh, India.
References
1. Чантурия В.А., Вигдергауз В.Е. Электрохимия сульфидов. Теория и практика флотации. М.: Руда и металлы; 2008. 272 с.
2. Reis A.S., Barrozo M.A.S. A study on bubble formation and its relation with the performance of apatite flotation. Separation and Purification Technology. 2016;161:112–120. https://doi.org/10.1016/j.seppur.2016.01.038
3. Chau T.T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Minerals Engineering. 2009;22(3):213–219. https://doi.org/10.1016/j.mineng.2008.07.009
4. Chanturiya V.A., Kondratiev S.A. Contemporary understanding and developments in the flotation theory of non-ferrous ores. Mineral Processing and Extractive Metallurgy Review. 2019;40(6):390–401. https://doi.org/10.1080/08827508.2019.1657863
5. Кондратьев С.А. Оценка активности и селективности действия карбоновых кислот, используемых в качестве флотационных реагентов. Физико-технические проблемы разработки полезных ископаемых. 2012;(6):116–125.Kondrat’ev S.A. Activity and selectivity of carboxylic acids as flotation agents. Journal of Mining Science. 2012;48(6):1039–1046. https://doi.org/10.1134/S1062739148060123
6. Liu Y., Chen J., Li Y., Zhang J., Kang D. First-principles study on the adsorption structure of water molecules on a pyrite (100) surface. Physicochemical Problems of Mineral Processing. 2021;57(2);121–130. https://doi.org/10.37190/ppmp/133010
7. Wang S., Kong R. Analyzing the flotation kinetics of long-flame coal slurry using water-soluble emulsified collector mixtures. Fuel. 2024;360:130572. https://doi.org/10.1016/j.fuel.2023.130572
8. Wang S., Wang Y., Kong R. Investigation of flotation bubble-particle attachment interactions influenced by monovalent cations and cationic surfactants from macro and molecular scales. Advanced Powder Technology. 2024;35(7):104549. https://doi.org/10.1016/j.apt.2024.104549
9. Kong R., Wang S., Gui D. Effects of microemulsion collector mixtures on the flotation performance of low-rank coal: A combined simulation and experimental study. Advanced Powder Technology. 2024;35(2):104334. https://doi.org/10.1016/j.apt.2024.104334
10. Чантурия Е.Л., Чантурия В.А., Перспективы использования электрохимической технологии водоподготовки при флотационном обогащении медно-цинковых руд. Цветные металлы. 2016;(1):13–19. https://doi.org/10.17580/tsm.2016.01.02Chanturiya E.L., Chanturiya V.A., Zhuravleva E.S. Prospects of application of water preparation of electrochemical technology in copper-zinc ores flotation. Tsvetnye Metally. 2016;(1):13–19. (In Russ.) https://doi.org/10.17580/tsm.2016.01.02
11. Прохоров К.В., Копылова А.Е. Перспективные способы интенсификации процесса флотации медно-порфировых и золотосеребряных руд путем применения электрохимической обработки. Проблемы недропользования. 2020;(2):96–106. Режим доступа: https://trud.igduran.ru/index.php/psu/article/view/351 (дата обращения: 29.05.2025).Prokhorov K.V., Kopylova A.E. Promising ways to intensify the flotation process of copper-porphyry and gold-silver ores by applying electrochemical processing. Problems of Subsoil Use. 2020;(2):96–106. (In Russ.) Available at: https://trud.igduran.ru/index.php/psu/article/view/351 (accessed: 29.05.2025).
12. Николаев А.А., Петрова А.А., Горячев Б.Е. Кинетика закрепления зерен пирита на пузырьке воздуха в условиях перемешивания суспензии. Физико-технические проблемы разработки полезных ископаемых. 2016;(2):131–139.Nikolaev A.A., Petrova A.A., Goryachev B.E. Pyrite grain and air bubble attachment kinetics in agitated pulp. Journal of Mining Science. 2016;52(2):352–359. https://doi.org/10.1134/S1062739116020502
13. Huebsch M.-T., Nomoto T., Suzuki M.-T., Arita R. Benchmark for Ab initio prediction of magnetic structures based on cluster-multipole theory. Physical Review X. 2021;11:011031. https://doi.org/10.1103/PhysRevX.11.011031
14. Santos E.C., Silva J.C.M., Duarte H.A. Pyrite oxidation mechanism by oxygen in aqueous medium. Journal of Physical Chemistry C. 2016;120(5):2760–2768. https://doi.org/10.1021/acs.jpcc.5b10949
15. Stirling A., Bernasconi M., Parrinello M. Ab initio simulation of water interaction with the (100) surface of pyrite. Journal of Chemical Physics. 2003;118(19):8917–8926. https://doi.org/10.1063/1.1566936
16. Steiner T. The hydrogen bond in the solid state. Angewandte Chemie International Edition. 2002;41(1):48–76. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
17. Чжо З.Я., Пьё Ч.Ч., Копылов А.Б., Ковалев Р.А. Совершенствование реагентных режимов флотации сфалерита и пирита из месторождений колчеданных медно-цинковых и полиметаллических руд. Известия Тульского государственного университета. Науки о Земле. 2021;(4):374–388. Kyaw Z.Ya., Phyo K.K., Kopylov A.B., Kovalev R.A. Improvement of reagent regimes of flota tion of sphalerite and pyrite from silver copper-zinc and polymetallic ore deposits. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2021;(4):374–388. (In Russ.)

