On assessment of geomechanical features of mining solid minerals
V.I. Golik
Moscow Polytechnic University, Moscow, Russian Federation
Russian Mining Industry №5 / 2025 p. 28-31
Abstract: Introduction. The paper analyzes the influence of natural and man-made factors on the state of ore-bearing rock masses during underground mining of solid minerals. It has been demonstrated that consideration of the rock mass geodynamics is an important factor in the efficient operation of mining companies, and that the stress level can be regulated during different stages of the deposit development. One of the priority methods to manage production of mineral resources is the concept of geodynamic zoning of the deposit during the mining phase with combined functions of the loading and bearing elements of the rock mass as part of the geomechanical system. The purpose of the article is to develop a concept of resource-saving geological management in underground mining of solid minerals. Methods. The methods applied included generalization and analysis of research, experiments, modeling and engineering forecasting using the methods of mathematical statistics and information technology. Results. The analysis of criteria are provided for the preservation of the land topography during mining operations, as a guarantee of safe development of the deposit. It is shown that mining operations are located within the field of stresses and displacements caused by the combined effects of natural and man-made factors. It is determined that the rocks form stable systems made of naturally wedging structural units during the mining process, and that such systems can be created by engineering solutions, e.g. creating man-made rock masses, dividing the ore field into the safe areas, etc. Types have been identified of the methods to calculate stable spans of roof exposures in the mining workings during the time when stowing of the mined-out space is completed. It is noted that the strength of the tailings resulted from block underground ore leaching can reach up to 1 MPa due to presence of natural binders, and these tailings can be used in rock pressure management. The proposed criterion for the reliability of the mined-out space stowing technologies is controlled by the ratio of the extracted ore volumes and consolidating stowing. It is established that transformation of the dynamic phenomena within the rock mass into the static ones is carried out by unloading the rock mass below the critical stresses. Conclusions. Accounting of the geomechanical state of the earth's crust is involved in solving the mining tasks, including the safety of mining operations, the quality of the mined ore and other economic indicators.
Keywords: minerals, underground mining, rock mass, gold leaching, natural stresses, man-made stresses, geomechanics
For citation: Golik V.I., Titova A.V. On assessment of geomechanical features of mining solid minerals. Russian Mining Industry. 2025;(5):28–31. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5-28-31
Article info
Received: 29.05.2025
Revised: 09.07.2025
Accepted: 10.07.2025
Information about the author
Vladimir I. Golik – Dr. Sci. (Eng.), Professor of the Department of Metallurgy, Moscow Polytechnic University, Moscow, Russian Federation; https://orcid.org/0000-0002-1181-8452 ; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Technology for nonwaste recovery of tailings of the Mizur mining and processing plant. Metallurgist. 2023;66(11-12):1476–1480. https://doi.org/10.1007/s11015-023-01462-y
2. Golik V.I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Prospects for return of valuable components lost in tailings of light metals ore processing. Metallurgist. 2023;67(1-2):96–103. https://doi.org/10.1007/s11015-023-01493-5
3. Brigida V.S., Golik V.I., R Klyuev.V., Sabirova L.B., Mambetalieva A.R., Karlina Yu.I. Efficiency gains when using activated mill tailings in underground mining. Metallurgist. 2023;67(3-4):398–408. https://doi.org/10.1007/s11015-023-01526-z
4. Шевчук Р.В., Маневич А.И., Акматов Д.Ж., Урманов Д.И., Шакиров А.И. Современные методы, методики и технические средства мониторинга движений земной коры. Горная промышленность. 2022;(5):99–104. https://doi.org/10.30686/1609-9192-2022-5-99-104 Shevchuk R.V., Manevich A.I., Akmatov D. Zh., Urmanov D.I., Shakirov A.I. Modern methods, techniques and technical means of monitoring movements of the Earth crust. Russian Mining Industry. 2022;(5):99–104. (In Russ.) https://doi.org/10.30686/1609-9192-2022-5-99-104
5. Батугин А.С., Мороз Н.Е. История развития и перспективы дальнейшего применения метода геодинамического районирования. Горная промышленность. 2024;(3S):14–19. https://doi.org/10.30686/1609-9192-2024-3S-14-19 Batugin A.S., Moroz N.E. History of development and prospects for further application of the geodynamic zoning method. Russian Mining Industry. 2024;(3S):14–19. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3S-14-19
6. Клюев Р.В., Босиков И.И., Майер А.В., Гаврина О.А. Комплексный анализ применения эффективных технологий для повышения устойчивого развития природно-технической системы. Устойчивое развитие горных территорий. 2020;12(2):283–290. Klyuev R.V., Bosikov I.I., Mayer A.V., Gavrina O.A. Comprehensive analysis of the effective technologies application to increase sustainable development of the natural-technical system. Sustainable Development of Mountain Territories. 2020;12(2):283– 290. (In Russ.)
7. Валиев Н.Г., Беркович В.Х., Пропп В.Д., Боровиков Е.В. Практика совершенствования системы разработки горизонтальными слоями с гидрозакладкой при отработке крутопадающего жильного месторождения. Известия Тульского государственного университета. Науки о Земле. 2020;(1):171–182. https://doi.org/10.46689/2218-5194-2020-1-1-171-182 Valiev N.G., Berkovich V.Kh., Propp V.D., Borovikov E.V. Practice of improving the system of developing horizontal layers with waterproof when exploiting a low-resident residential deposit. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2020;(1):171–182. (In Russ.) https://doi.org/10.46689/2218-5194-2020-1-1-171-182
8. Абрамкин Н.И., Ефимов В.И., Мансуров П.А. Эмпирические методики оценки состояния массива горных пород. Известия высших учебных заведений. Горный журнал. 2022;(2):68–76. https://doi.org/10.21440/0536-1028-2022-2-68-76 Abramkin N.I., Efimov V.I., Mansurov P.A. Empirical techniques for assessing rock mass condition. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2022;(2):68–76. (In Russ.) https://doi.org/10.21440/0536-1028-2022-2-68-76
9. Flores G., Catalan A. A transition from a large open pit into a novel “macroblock variant” block caving geometry at Chuquicamata mine, Codelco Chile. Journal of Rock Mechanics and Geotechnical Engineering. 2019;11(3):549–561. https://doi.org/10.1016/j.jrmge.2018.08.010
10. Pereira F.C., Lima T., Chaves S.S., Vilca Y.C., Canabrava L.P. Stability analysis of free span in excavations with diameter greater than 10 meters – Study case in the córrego do sítio mine. In: Rock Mechanics for Natural Resources and Infrastructure Development – Full Papers : Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering. Ser. Proceedings in Earth and Geosciences. London: CRC Press; 2020. Vol. 6, pp. 878–883.
11. Lei Q., Gao K. A numerical study of stress variability in heterogeneous fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 2019;113:121–133. https://doi.org/10.1016/j.ijrmms.2018.12.001
12. Qi C., Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Minerals Engineering. 2019;144:106025. https://doi.org/10.1016/j.mineng.2019.106025

