Digital database of parameters for monolithic backfill formation technology based on salt waste consolidation

DOI: https://doi.org/10.30686/1609-9192-2025-5S-74-78

Читать на русскоя языке Zubkov P.O.1, Nikiforova I.L.2
1  Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation
2  All-Russian Scientific-research Institute of Mineral Resources named after N.M. Fedorovsky, Moscow, Russian Federation
Russian Mining Industry №5S/ 2025 p. 74-78

Abstract: Formation of monolithic backfill structures based on salt waste consolidation represents an innovative geotechnology aimed at addressing environmental and technological challenges in the mining industry. A key component of this technology is a digital database that enables monitoring and optimization of the backfilling process parameters. The article presents a digital database that ensures integration with modelling systems and enables prediction of the backfill properties. It also includes tools for data visualization and statistical analysis. Efficient data management requires modern DBMS solutions with robust access security. Creation of a digital database of backfill parameters opens up opportunities for comprehensive monitoring of the consolidation processes, including selection of the particle size distribution of the mixture, control of physical and mechanical characteristics, and prediction of the backfill mass properties over time. Accounting for such parameters as density, moisture content, porosity, setting time, strength, and deformation modulus makes it possible to optimize technological processes and ensure the required operational characteristics of the backfill. Further technological development envisions integration with CAD and production management systems, enhancing process automation and precision. Implementing this system will optimize resource utilization, improve safety, and reduce environmental impact in mining regions.

Keywords: backfill, backfill masses, consolidation, digitalization, database, mining system

For citation: Zubkov P.O., Nikiforova I.L. Digital database of parameters for monolithic backfill formation technology based on salt waste consolidation. Russian Mining Industry. 2025;(5S):74–78. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5S-74-78


Article info

Received: 19.08.2025

Revised: 06.10.2025

Accepted: 08.10.2025


Information about the authors

Pavel O. Zubkov – Junior Research Associate, Department of Challenges in Modelling and Management of Mining Systems, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Irina L. Nikiforova – Chief Specialist, All-Russian Scientific-research Institute of Mineral Resources named after N.M. Fedorovsky, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Татарников В.И. Применение технологий разработки месторождений калийных солей с управляемым воздействием на формируемый закладочный массив. В кн.: Проблемы и перспективы комплексного освоения и сохранения земных недр: материалы 6-й конференции Международной научной школы академика РАН К.Н. Трубецкого, посвященная 300-летию Российской академии наук, г. Москва, 17–21 июня 2024 г. М.: ИПКОН РАН; 2024. С. 264–266.

2. Татарников В.И. Влияние добавок отходов переработки руд фосфорита на механические характеристики консолидирующегося закладочного массива при освоения Гремячинского месторождения. В кн.: Проблемы освоения недр в XXI веке глазами молодых: сборник материалов 16-й Международной научной школы молодых ученых и специалистов, г. Москва, 23–27 октября 2023 г. М.: ИПКОН РАН; 2023. С. 191–194.

3. Thanayamwatte P., Sivakugan N., To P. Hydraulic backfill consolidation in underground mine stopes. International Journal of Geosynthetics and Ground Engineering. 2024;10(3):50. https://doi.org/10.1007/s40891-024-00560-4

4. Belem T., El Aatar O., Bussière B., Benzaazoua M. Gravity-driven 1-D consolidation of cemented paste backfill in 3-m-high columns. Innovative Infrastructure Solutions. 2016;1(1):37. https://doi.org/10.1007/s41062-016-0039-2

5. Pan Z., Zhou K., Wang Y., Lin Y., Saleem F. Comparative analysis of strength and deformation behavior of cemented tailings backfill under curing temperature effect. Materials. 2022;15(10):3491. https://doi.org/10.3390/ma15103491

6. Bai E., Guo W., Tan Y., Yang D. The analysis and application of granular backfill material to reduce surface subsidence in China’s northwest coal mining area. PLoS ONE. 2018;13(7):e0201112. https://doi.org/10.1371/journal.pone.0201112

7. Yubero M.T., Olivella S., Gens A., Bonet E., Lloret A., Alfonso P. Analysis of the process of compaction movements of deposits of crushed salt tailings. Engineering Geology. 2021;293:106290. https://doi.org/10.1016/j.enggeo.2021.106290

8. Hawkins J.W., Evans R.S. Uses of the borehole camera in hydrologic investigations related to coal mining. In: Proceedings America Society of Mining and Reclamation. 2004, pp. 847–859. https://doi.org/10.21000/JASMR04010847

9. Wang C.-Y., Law K.T. Review of borehole camera technology. Yanshilixue Yu Gongcheng Xuebao / Chinese Journal of Rock Mechanics and Engineering. 2005;24(19):3440–3448.

10. Brent G.F., Smith G.E. The detection of blast damage by borehole pressure measurement. Journal of the Southern African Institute of Mining and Metallurgy. 2000;100(1):17–24. Available at: https://www.saimm.co.za/Journal/v100n01p017.pdf (accessed: 29.06.2025).

11. Smirnov A.V. The generalization of field investigations of rock massif deformation in the neigborhood of extended mine workings. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal. 2015;(5):75–80. (In Russ.)