Changing the approach to designing mining engineering systems for surface mining based on enhanced principles of rock mass quality management


Читать на русскоя языкеM.V. Rylnikova1, A.V. Vlasov2, D.N. Radchenko1
1 Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation
2 Karelsky Okatysh JSC, Kostomuksha, Russian Federation

Russian Mining Industry №1 / 2024 стр. 78-85

Abstract: The main effect in transition of deep open pits to the In Pit Crushing and Conveying (IPCC) system of rock mass transportation is achieved through cutting the costs of rock mass hauling. Independence of the transportation system throughput from the haulage distance makes it possible to increase the boundary stripping ratio and extend the service life of the open pit. Transition from the cyclic to the In Pit Crushing and Conveying (IPCC) system of rock mass hauling still leaves insufficiently studied the issues related to assessment of the minimum commercial and cut-off grades of valuable components and contaminants in ores, the permissible thickness of the ore bodies when justifying the feasibility study of conditions, as well as management of the rock mass flow quality, optimization of the rock mass reduction ratio at the stage of its preparation for conveyor hauling from the open pit to the ore stockpiles and, further, to the ore hoppers of the processing plants, and many other challenges. The paper systematizes the results of other research by the authors as well as other data and it shows that the placing the crushing equipment and the belt conveyors within the boundaries of the open pit offers additional opportunities to manage the quality of rock mass flows, i.e. the ore mass and the overburden due to variations in the logistic and hauling schemes of the open pit due to transition to the In Pit Crushing and Conveying (IPCC) system. The above approaches to implementation of the rock mass haulage system in open pits remove the boundaries between mining and processing of minerals, expand the possibilities of targeted formation of technogenic deposits, and potentially expand the range of marketable products of the mining company. In fact, the mining and processing facility is considered as a unified technological process of the complete production cycle carried out in a single technological environment. Implementation of the proposed technological schemes will require changes in the regulatory and legal framework.

Keywords: open-pit mining, mining engineering system, quality management, ore flow, rock mass flow, overburden, ore conveyor, overburden conveyor, recovery enhancement

For citation: Rylnikova M.V., Vlasov A.V., Radchenko D.N. Changing the approach to designing mining engineering systems for surface mining based on enhanced principles of rock mass quality management. Russian Mining Industry. 2024;(1):78–85. (In Russ.)

Article info

Received: 18.11.2023

Revised: 10.01.2024

Accepted: 12.01.2024

Information about the authors

Marina V. Rylnikova – Dr. Sci. (Eng.), Professor, Head of Department, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Anton V. Vlasov – Cand. Sci. (Eng.), IPCC Project Manager, Karelsky Okatysh JSC, Kostomuksha, Russian Federation

Dmitry N. Radchenko – Cand. Sci. (Eng.), Associate Professor, Head of the Laboratory of Theoretical Fundamentals for Mining Systems Design, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation;, Scopus ID 6507269210


1. Фаддеев Б.В. Конвейерный транспорт на рудных карьерах. М.: Недра; 1972. 160 с. Faddeyev B.V. Conveyor haulage in ore pits. Moscow, Nedra Publ., 1972, 160 p. (In Russ.).

2. Utley R.W. In-Pit Crushing. In: Darling P. (ed.) SME Mining Engineering Handbook. 3rd ed. Society for Mining, Metallurgy, and Exploration; 2011, рp. 941–956. Available at: (accessed:10.01.2024).

3. Яковлев В.Л., Берсенев В.А., Глебов А.В., Кулнияз С.С., Маринин М.А. Выбор схем циклично-поточной технологии на глубоких карьерах. Физико-технические проблемы разработки полезных ископаемых. 2019;(5):98–104. Yakovlev V.L., Bersenev V.A., Glebov A.V., Kulniyaz S.S., Marinin M.A. Selecting cyclical-and-continuous process flow diagrams for deep open pit mines. Journal of Mining Science. 2019;55(5):783–788.

4. Решетняк С.П., Авраамова Н.С. Обоснование и реализация рациональных технологических схем автомобильно-конвейерного транспорта скальных горных пород для глубоких карьеров. Рациональное освоение недр. 2022;(1):32–39. Reshetnyak S.P., Avraamova N.S. Rational in-pit crushing and conveying schemes for hard-rocks in deep open pits: justification and implementation. Ratsionalnoe Osvoenie Nedr. 2022;(1):32–39. (In Russ.)

5. Dzakpata I.K. Time utilisation modelling of fully mobile in-pit crushing and conveying systems. PhD Thesis. The University of Queensland, School of Mechanical and Mining Engineering; 2020. 218 р.

6. Dean M., Knights P., Kizil M.S., Nehring M. Selection and planning of fully mobile in-pit crusher and conveyor systems for deep open pit metalliferous applications. In: AusIMM-2015 3rd International Future Mining Conference, Sydney, NSW, November, 4–6 2015. Carlton, VIC; 2015, pp. 219–225.

7. Osanloo M., Paricheh M. In-pit crushing and conveying technology in open-pit mining operations: a literature review and research agenda. International Journal of Mining, Reclamation and Environment. 2020;34(6):430–457. 

8. Федотенко В.С., Власов А.В., Кливер С.Я., Шадрунов А.Г. К обоснованию условий и параметров формирования горнотехнических систем при строительстве и эксплуатации комплекса циклично-поточной геотехнологии в глубоких карьерах. Горная промышленность. 2020;(5):102–107. Fedotenko V.S., Vlasov A.V., Kliver S.Ya., Shadrunov A.G. Justification of Conditions and Parameters for Designing of Mining Systems in Construction and Operation of Complex Conveyor Ore Transportation in Deep Open-Cast Mines. Russian Mining Industry. 2020;(5):102–107. (In Russ.)

9. Вайсберг Л.А., Крупп П.И. Перспективные схемы рудоподготовки при использовании циклично-поточных технологий. Горный журнал. 2003;(9):30–33. Режим доступа: (дата обращения: 10.01.2024). Vaisberg L.A., Krupp P.I. Perspective schemes of ore preparation when using the In Pit Crushing and Conveying (IPCC) systems. Gornyi Zhurnal. 2003;(9):30–33. (In Russ.) Available at: (accessed: 10.01.2024).

10. Новоселов С.В. Амбарцумян А.В. Применение параметра кондиций «минимальная мощность рудных тел» при разработке ТЭО кондиций. Золото и технологии. 2019;(3):94–97. Режим доступа: (дата обращения: 10.01.2024). Novoselov S.V. Ambartsumyan A.V. Application of the 'minimum thickness of the ore bodies' condition parameter in the designing the condition feasibility study. Zoloto i tekhnologii. 2019;(3):94–97. (In Russ.) Available at: (accessed: 10.01.2024).