Extending the service life of centrifugal dewatering pump impellers in mines

DOI: https://doi.org/10.30686/1609-9192-2024-2-143-146

Читать на русскоя языкеV.V. Zotov , V.U. Mnatsakanyan, M.M. Bazlin, V.S. Lakshinsky, E.V. Dyatlova
National University of Science and Technology MISIS, Moscow, Russian Federation
Russian Mining Industry №2 / 2024 стр. 143-146

Abstract: Mining The article discusses the main failure causes of centrifugal pumps used in the mine dewatering plants. The factors causing intensive wear of the impellers used in centrifugal pumps of the CNS-33-66...330 type are analysed, as well as the ways of increasing their serviceability. The gas dynamic cold spraying is recognized as the most promising and efficient method of applying functional coatings, which makes it possible to improve the condition of the surface layer and eliminate surface defects of the initial impeller blanks, which have a significant impact on the serviceability of the parts. The main research trends are outlined in the studied area, and practical recommendations are provided on using the gas dynamic cold spraying methid both in the pump manufacturing process and in their overhaul. It is shown that one of the promising trends in development the gas dynamic cold spraying applications is the creation of multilayer coatings on the impeller blades based on compositions of various metal-ceramic powders. Along with the hardening treatment, this combination will allow to provide the impellers with a set of necessary functional characteristics for the hydro-abrasive wear conditions. technological process as a sequence of changing the natural state of the Earth's subsoil to obtain a certain quantity and quality of mineral products is characterized by departures from the specified normative parameter values, which is due to causes of different nature. Most of these causes are man-made, anf they are created during the performance of specific process operations by the personnel. The article presents an original approach to managing the control over the technological process parameters in a coal strip mine. To reduce the magnitude and probability of the process departures from the normative values, the authors propose to create technical and organizational control loops. Each loop is a closed chain of technical means and organizational tools, which secures up-keeping of the normative technological process state. Production risk is proposed to be used as a criterion to assess the efficiency of the control loops. The methodology allowing to calculate the risk is described. The results of the contour approach application to the technological process control at the Solntsevsky coal strip mine are presented.

Keywords: centrifugal pumps, failure causes, impeller, surface layer, corrosion, wear, casting defects, gas dynamic cold spraying

For citation: Zotov V.V., Mnatsakanyan V.U., Bazlin M.M., Lakshinsky V.S., Dyatlova E.V. Extending the service life of centrifugal dewatering pump impellers in mines. Russian Mining Industry. 2024;(2):143–146. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-143-146


Article info

Received: 01.03.2024

Revised: 23.03.2024

Accepted: 30.03.2024


Information about the authors

Vasily V. Zotov – Cand. Sci. (Eng.), Associate Professor, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; https://orcid.org/0000-0001-8575-2970, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Victoria U. Mnatsakanyan – Dr. Sci. (Eng.), Professor, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; https://orcid.org/0000-0001-9276-7599; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Maxim M. Bazlin – Postgraduate Student, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; https://orcid.org/0009-0002-1136-5868; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Viktor S. Lakshinsky – Postgraduate Student, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; https://orcid.org/0009-0004-6839-0022; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ekaterina V. Dyatlova – Student, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Долганов А.В., Тимухин С.А. Гидроабразивный износ насосов рудничного водоотлива. М.: Академия Естествознания; 2016. 180 с.

2. Паламарчук Т.Н. Обоснование бескавитационных режимных параметров насосного оборудования водоотливных комплексов угольных шахт: дис. … канд. техн. наук. Тула; 2019. 205 с.

3. Долганов А.В. Гидроабразивный износ и экономичность водоотливных установок шахт и рудников. Горный информационно-аналитический бюллетень. 2019;(S9):3–8. https://doi.org/10.25018/0236-1493-2019-5-9-3-8 Dolganov A.V. Hydroabrasive wear and profitability of water-drainage installations in mines and ore mines. Mining Informational and Analytical Bulletin. 2019;(S9):3–8. (In Russ.) https://doi.org/10.25018/0236-1493-2019-5-9-3-8

4. Бондаренко С.И., Демьянец К.А. Исследование гидроабразивной износостойкости серых и высокопрочных чугунов, микролегированных оловом и сурьмой. Вестник Харьковского национального автомобильно-дорожного университета. 2008;(42):90–93. Bondarenko S.I., Demyanets K.A. Hydroabrasive wear resistance investigation of gray and high-strength cast irons microalloyed with SB and SN. Bulletin of Kharkov National Automobile and Highway University. 2008;(42):90–93. (In Russ.)

5. Долганов А.В. Повышение энергоэффективности при эксплуатации комплексов шахтного водоотлива. Горный информационно-аналитический бюллетень. 2019;(S9):16–23. https://doi.org/10.25018/0236-1493-2019-5-9-16-23 Dolganov A.V. Energy efficiency improvement during operation of mine waterlets. Mining Informational and Analytical Bulletin. 2019;(S9):16–23. (In Russ.) https://doi.org/10.25018/0236-1493-2019-5-9-16-23

6. Попов В.М. Рудничные водоотливные установки. 2-е изд. М.: Недра; 1983. 304 с.

7. Попов В.М. Шахтные насосы (теория, расчет и эксплуатация). М.: Недра; 1993. 224 с.

8. Попов В.М., Лебедев П.Ф. Анализ сложных гидравлических схем рудничного водоотлива. М.: Недра; 1978.

9. Долганов А.В. Влияние износа элементов проточной части шахтных насосов ЦНС(К) 300-360 на режимы их работы. Известия Уральского государственного горного университета. 2012;(27-28):110–113. Dolganov A.V. Effect of wear of elements of flow parts of mine pumps CNS (K) 300-360 on conditions of their operation. Izvestiya of the Ural State Mining University. 2012;(27-28):110–113. (In Russ.)

10. Рыбак Я., Хайрутдинов М.М., Конгар-Сюрюн Ч.Б., Тюляева Ю.С. Ресурсосберегающие технологии освоения месторождений полезных ископаемых. Устойчивое развитие горных территорий. 2021;13(3):406–415. https://doi.org/10.21177/1998-4502-2021-13-3-406-415 Rybak Ya., Khayrutdinov M.M., Kongar-Syuryun Ch.B., Tyulyayeva Yu.S. Resource-saving technologies for development of mineral deposits. Sustainable Development of Mountain Territories. 2021;13(3):406–415. (In Russ.) https://doi.org/10.21177/1998-4502-2021-13-3-406-415

11. Šavar M., Kozmar H., Sutlović I. Improving centrifugal pump efficiency by impeller trimming. Desalination. 2009;249(2):654–659. https://doi.org/10.1016/j.desal.2008.11.018

12. Pei J., Wang W., Yuan S., Zhang J. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement. Chinese Journal of Mechanical Engineering. 2016;29(5):992–1002. https://doi.org/10.3901/CJME.2016.0519.069

13. Shojaeefard M.H., Tahani M., Khalkhali A., Ehghaghi M.B., Fallah H., Beglari M. A parametric study for improving the centrifugal pump impeller for use in viscous fluid pumping. Heat and Mass Transfer. 2013;49(2):197–206. https://doi.org/10.1007/s00231-012-1074-y

14. Рахутин М.Г., Занг К.К., Кривенко А.Е., Чан В.Х. Оценка влияния температуры рабочей жидкости на потери мощности карьерного гидравлического экскаватора. Записки Горного института. 2023;261:374–383. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16193 (дата обращения: 12.02.2024). Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator. Journal of Mining Institute. 2023;261:374–383. Available at: https://pmi.spmi.ru/pmi/article/view/16193 (accessed: 12.02.2024).

15. Занг Куок Кхань, Кривенко А.Е., Пудов Е.Ю., Кузин Е.Г. Разработка модели оценки эффективности системы охлаждения рабочей жидкости гидравлического карьерного экскаватора. Горный журнал. 2021;(12):64–69. https://doi.org/10.17580/gzh.2021.12.12 Khanh G.Q., Krivenko A.E., Pudov E.Yu., Kuzin E.G. Performance evaluation model for power fluid cooling system of hydraulic excavators. Gornyi Zhurnal. 2021;(12):64–69. (In Russ.) https://doi.org/10.17580/gzh.2021.12.12

16. Khoreshok A., Kantovich L., Kuznetsov V., Preis E., Kuziev D. The results of cutting disks testing for rock destruction. E3S Web of Conferences. 2017;15:03004. https://doi.org/10.1051/E3SCONF/20171503004

17. Keropyan A.M., Kuziev D.A., Krivenko A.E. Process research of wheel-rail mining machines traction. In: Radionov A., Kravchenko O., Guzeev V., Rozhdestvenskiy Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). Springer, Cham.; 2020, рр. 703–709. https://doi.org/10.1007/978-3-030-22063-1_75

18. Muzik J., Seidlova A., Kudelcikova M., Kongar-Syuryun C., Mihalik J. Flood hazard calculation by using a digital terrain model. IOP Conference Series: Earth and Environmental Science. 2021;906(1):012067. https://doi.org/10.1088/1755-1315/906/1/012067

19. Соловьев С.В., Кузиев Д.А. Исследование жесткостных параметров привода тягового механизма драглайна эш-10/70. Уголь. 2017;(1):37–38. Soloviev S.V., Kuziev D.A. Dragline ESH-10/70 linkage stiffness parameters study. Ugol’. 2017;(1):37–38. (In Russ.)

20. Keropyan A.M. Application of non-contact technologies for measuring roughness of interacting surfaces when monitoring friction coefficient. Materials Today: Proceedings. 2021;38(4):2004–2008. https://doi.org/10.1016/j.matpr.2020.10.018

21. Севагин С.В., Вержанский А.П. Обеспечение требуемого качества изготовления штоков гидроцилиндров погрузочно-доставочных машин. Горный информационно-аналитический бюллетень. 2021;(5):35–44. https://doi.org/10.25018/0236_1493_2021_5_0_35 Sevagin S.V., Verzhansky A.P. Quality control in manufacture of hydraulic cylinder rods for load-haul-dumpers. Mining Informational and Analytical Bulletin. 2021;(5):35–44. (In Russ.) https://doi.org/10.25018/0236_1493_2021_5_0_35

22. Алхимов А.П., Клинков С.В., Косарев В.Ф., Фомин В.М. Холодное газодинамическое напыление. Теория и практика. М.: Физматлит; 2010. 536 с.