Investigation of physical and mechanical properties of ijolite-urtite under uniaxial and triaxial compression

DOI: https://doi.org/10.30686/1609-9192-2024-2-127-133

Читать на русскоя языкеN.N. Kuznetcov , A.K. Pak
Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №2 / 2024 стр. 127-133

Abstract: The study of deformation and failure processes in rock masses is often carried out in laboratory conditions on samples. Widely used test equipment is used for this purpose, which makes it possible to create loading conditions similar to those inside the rock mass. Basically, the loading mode is implemented when forces are applied only to one side of the sample (along one axis), that is, uniaxial compression or tension. Test equipment that allows creation of loading along three axes, i.e. triaxial compression, is used less frequently. Such equipment is often very expensive, and testing requires a lot of time and resources. Nevertheless, this loading mode is one of the most interesting, since it is close to real conditions in the rock mass. This paper presents the results of experimental studies of ijolite-urtite samples (rocks from the Khibiny massif, the Kola Region) in conditions of uniaxial and triaxial compression. The purpose of the research is to establish how the values of the compressive strength of this rock change, to assess the critical values of the specific strain energy, as well as the tendency to dynamic destruction during the transition from the uniaxial loading mode to the triaxial one. The experimental studies revealed that there exists a sharper increase in the values of compressive strength and the critical values of specific strain energy of the ijolite-urtite samples in conditions of triaxial compression than under uniaxial compression. It has been established that the studied rock is prone to dynamic failure under uniaxial compression and preserve its tendency to this type of failure under triaxial compression.

Keywords: hard rocks, uniaxial compression, triaxial compression, ijolite-urtite, physical and mechanical properties, dynamic failure

For citation: Kuznetcov N.N., Pak A.K. Investigation of physical and mechanical properties of ijolite-urtite under uniaxial and triaxial compression. Russian Mining Industry. 2024;(2):127–133. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-127-133


Article info

Received: 21.02.2024

Revised: 14.03.2024

Accepted: 16.03.2024


Information about the authors

Nikolai N. Kuznecov – Cand. Sci. (Eng.), Head of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Mining Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexandr K. Pak – Researcher of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Mining Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Кузнецов Г.Н. Механические свойства горных пород. М.: Углетехиздат; 1947. 180 с.

2. Турчанинов И.А., Медведев Р.В., Панин В.И. Современные методы комплексного определения физических свойств горных пород. Ленинград: Недра; 1967. 200 с.

3. Ильницкая Е.И., Тедер Р.И., Ватолин Е.С., Кунтыш М.Ф. Свойства горных пород и методы их определения. М.: Недра; 1969. 392 с.

4. Берон А.И., Ватолин Е.С., Койфман М.И. Свойства горных пород при разных видах и режимах нагружения. М.: Недра; 1984. 276 с.

5. Ломтадзе В.Д. Физико-механические свойства горных пород. Ленинград: Недра; 1990. 328 с.

6. Каспарьян Э.В., Козырев А.А., Иофис М.А., Макаров А.Б. Геомеханика. М.: Высшая школа; 2006. 503 с.

7. Jaeger J.C., Cook N. G.W., Zimmerman R.W. Fundamentals of rock mechanics. Blackwell publishing, Malden; 2007. 475 p.

8. Feng·X.‑T., Bezalel H.,·Li X., Chang C., Ma X., Zhang X., Ingraham M., Suzuki K. I ISRM suggested method: determining deformation and failure characteristics of rocks subjected to true triaxial compression. Rock Mechanics and Rock Engineering. 2019;52(6):2011–2020. https://doi.org/10.1007/s00603-019-01782-z

9. Karman T. Festigkeits Versuche unter allseitigem Druck. Zeitschrift des Vereines Deutscher Ingenieure. 1911;55:1749– 1759.

10. Deak F., Van P., Vasarhelyi B. Hundred years after the first triaxial test. Periodica Polytechnica Civil Engineering. 2012;56(1):115–122. https://doi.org/10.3311/pp.ci.2012-1.13

11. Muller O. Untersuchungen an Karb ongesteinen zur Klarung von Gebirgsdruckfragen. Gluckauf. 1930;47:1601–1612.

12. Воларович М.П., Балашов Д.В., Павлоградский В.А. Исследование сжимаемости изверженных горных пород при давлениях до 5 000 кг/см2. Известия АН СССР. Серия Геофизическая. 1959;(5):693–702. Volarovich M.P., Balashov D.V., Pavlogradsky V.A. Study of compressibility of igneous rocks at pressures up to 5,000 kg/cm2. Izvestiya AN SSSR. Seriya Geofizicheskaya. 1959;(5):693–702. (In Russ.)

13. Томашевская И.С. Исследование механических свойств горных пород в условиях высокого давления при сложных напряженных состояниях: автореф. дис. … канд. физ.-мат. наук. М., 1996. 12 с.

14. Horibe T., Kobayashi R. Physical properties of coal-measures rocks under triaxial pressure. Journal of Mining Society Japan. 1958;(74):142–146. (In Japan.)

15. Ставрогин А.Н., Тарасов Б.Г. Экспериментальная физика и механика горных пород. СПб.: Наука; 2001. 343 с.

16. Tarasov B. Superbrittleness of rocks at high confining pressure. In: Van Sint Jan M., Potvin Y. (eds). Proceedings of the 5th International Seminar on Deep and High Stress Mining, Santiago, Chile, Oct 4–8, 2010. Australia: Australian Centre for Geomechanics; 2010, pp. 119–133.

17. Mishra D.A., Janecek I. Laboratory triaxial testing – from historical outlooks to technical aspects. Procedia Engineering. 2017;191:342–351. https://doi.org/10.1016/j.proeng.2017.05.190

18. Liu X., Yu J., Zhang J.,·Yao W., Cai Y., Zhou X. Anisotropic time-dependent deformation and damage constitutive model of rock under true triaxial compression. Mechanics of Time-Dependent Materials. 2023. https://doi.org/10.1007/s11043-023-09617-9

19. Zhang Y., Feng X.-T., Zhang X., Wang Z., Sharifzadeh M., Yang C. A novel application of strain energy for fracturing process analysis of hard rock under true triaxial compression. Rock Mechanics and Rock Engineering. 2019;52(11):4257–4272. https://doi.org/10.1007/s00603-019-01868-8

20. Козырев А.А., Кузнецов Н.Н., Шоков А.Н. Оценка удароопасности скальных горных пород Ждановского месторождения (Кольский полуостров). Горная промышленность. 2022;(6):75–82. https://doi.org/10.30686/16099192-2022-6-75-82 Kozyrev A.A., Kuznetcov N.N., Shokov A.N. Rockburst hazard assessment of hard rocks in the Zhdanovskoe deposit (Kola Peninsula). Russian Mining Industry. 2022;(6):75–82. (In Russ.) https://doi.org/10.30686/1609-9192-2022-6-75-82

21. Xia M., Zhou K. Particle simulation of the failure process of brittle rock under triaxial compression. International Journal of Minerals, Metallurgy and Materials. 2010;17(5):507–513. https://doi.org/10.1007/s12613-010-0350-4

22. Shi G.-C., Chen G., Pan Y.-T., Yang X.-L., Liu Y., Dai G.-Z. Stress-drop effect on brittleness evaluation of rock materials. Journal of Central South University. 2019;26(7):1807–1819. https://doi.org/10.1007/s11771-019-4135-2

23. Descamps F., Tshibangu J.-P., Ramos S.M., Schroeder C., Verbrugge J.-C. Behavior of carbonated rocks under true triaxial compression. In: Proceedings of the 12th ISRM Congress, Beijin, China. 2011, pp. 597–602.

24. Tarasov B. Dramatic Weakening and Embrittlement of Intact Hard Rocks in the Earth’s Crust at Seismic Depths as a Cause of Shallow Earthquakes. In: Nawaz M., Kundu S.N., Sattar F. (eds) Earth Crust. IntechOpen; 2019. https://doi.org/10.5772/intechopen.85413

25. Каспарьян Э.В., Кузнецов Н.Н., Шоков А.Н., Пак А.К. Исследование условий динамических разрушений в массивах скальных пород. Горный информационно-аналитический бюллетень. 2020;(4):69–84. https://doi. org/10.25018/0236-1493-2020-40-69-84 Kasparyan E.E., Kuznetsov N.N., Shokov A.N., Pak A.K. Dynamic failure conditions in strong rock masses. Mining Informational and Analytical Bulletin. 2020;(4):69–84. (In Russ.) https://doi.org/10.25018/0236-1493-2020-40-69-84

26. Cai M., Kaiser P.K. Rockburst Support: Reference Book. Volume I: Rockburst Phenomenon and Support Characteristics. Sudbury: Laurentian University; 2018. 284 p.

27. Козырев А.А., Кузнецов Н.Н., Макаров А.Б. О критериях удароопасности горных пород. Горная промышленность. 2023;(S1):61–68. https://doi.org/10.30686/1609-9192-2023-S1-61-68 Kozyrev A.A., Kuznecov N.N., Makarov A.B. On criteria of rockburst hazard. Russian Mining Industry. 2023; (1 Suppl.):61–68. https://doi.org/10.30686/1609-9192-2023-S1-61-68

28. Петухов И.М., Линьков А.М. Механика горных ударов и выбросов. М.: Недра; 1983. 280 с.