Self-ignition of dust and gas-air mixtures in the atmosphere of mine workings

DOI: https://doi.org/10.30686/1609-9192-2024-2-121-126

Читать на русскоя языкеS.V. Cherdantsev , P.A. Shlapakov, K.S. Lebedev, A.Yu. Erastov, S.A. Khaymin
JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry”, Kemerovo, Russian Federation
Russian Mining Industry №2 / 2024 стр. 121-126

Abstract: The underground mining of coal deposits is usually accompanied by manifestation of a number of negative factors, one of which is the presence of dust and gas-air mixtures consisting of fine coal dust, methane released from the broken coal and the air of the mine atmosphere. Despite modern methods and means of dust suppression and dust collection, it has not yet been possible to achieve complete neutralization of dust and gas-air mixtures in the atmosphere of mine workings. The negative effects of dust and gas-air mixtures can manifest themselves in different ways. On the one hand, deposits of coal dust in the worked-out spaces, under certain conditions, form foci of spontaneous combustion, which are the causes of endogenous fires. On the other hand, dust and gas-air mixtures are predisposed to ignition from external sources or to spontaneous ignition followed by combustion in the form of deflagration, which, under certain conditions, turns into detonation, spreading in the atmosphere of mine workings at supersonic speed. This article considers a nonstationary one-dimensional problem of selfignition of dust and gas-air mixtures in the air flows of mine workings. The temperature and the period of spontaneous ignition of dust-gas-air mixtures are found based on the solution of this problem, expressed numerically using the Geer method. An analysis of the mixture self-ignition process is performed and some patterns of the influence of the parameters of mixtures on the period of their self-ignition are revealed.

Keywords: mining, dust and gas-air mixtures, thermal energy balance equation, stoichiometric ratio, self-ignition temperature, self-ignition period, adiabatic process

For citation: Cherdantsev S.V., Shlapakov P.A., Lebedev K.S., Erastov A.Yu., Khaymin S.A. Self-ignition of dust and gas-air mixtures in the atmosphere of mine workings. Russian Mining Industry. 2024;(2):121–126. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-121-126


Article info

Received: 17.02.2024

Revised: 04.03.2024

Accepted: 11.03.2024


Information about the authors

Sergei V. Cherdantsev – Dr. Sci. (Eng.), Leading Researcher, JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry” (JSC “NC VOSTNII”), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pavel A. Shlapakov – Cand. Sci. (Eng.), Laboratory Head, JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry” (JSC “NC VOSTNII”), Kemerovo, Russian Federation; е–mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kirill S. Lebedev – Senior Researcher, JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry” (JSC “NC VOSTNII”), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Anton Yu. Erastov – Senior Researcher, JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry” (JSC “NC VOSTNII”), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sergei A. Khaymin – Senior Researcher, JSC “Scientific Centre VOSTNII on Industrial and Ecological Safety in Mountain Industry” (JSC “NC VOSTNII”), Kemerovo, Russian Federation; е–mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Шлапаков П.А., Ерастов А.Ю., Хаймин С.А., Лебедев К.С., Колыхалов В.В., Шлапаков Е.А. Эндогенная пожаробезопасность на угольных предприятиях Кузбасса. Вестник Научного центра ВостНИИ по промышленной и экологической безопасности. 2019;(1):14–21. https://doi.org/10.25558/VOSTNII.2019.69.88.002 Shlapakov P.A., Erastov A.Yu., Khaymin S.A., Lebedev K.S., Kolikhalov V.V., Shlapakov E.A. Endogenous fire safety in kuzbass coal enterprises. Bulletin of Scientific Centre VostNII for Industrial and Environmental Safety. 2019;(1):14–21. (In Russ.) https://doi.org/10.25558/VOSTNII.2019.69.88.002

2. Денисов Е.Т., Саркисов О.М., Лихтенштейн Г.И. Химическая кинетика. М.: Химия; 2000. 568 с. Denisov E.T., Sarkisov O.M., Lichtenstein G.I. Chemical kinetics. Moscow, Khimiya Publ; 2000, 568 p. (In Russ.).

3. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука; 1987. 502 с. Frank-Kamenetsky D.A. Diffusion and heat transfer in chemical kinetics. Moscow, Nauka Publ., 1987, 502 p. (In Russ.).

4. Канторович Б.В. Основы теории горения и газификации твердого топлива. М.: Книга по требованию; 2013. 601 с. Kantorovich B.V. Fundamentals of the theory of combustion and gasification of solid fuels. Moscow, Book-on-Demand Publ., 2013, 601 p. (In Russ.).

5. Кремнев О.А., Журавленко В.Я. Тепломассоперенос в горном массиве и подземных сооружениях. Киев: Наукова думка; 1986. 344 с. Kremnev O.A., Zhuravlenko V.Ya. Heat and mass transfer in a rock mass and underground facilities. Kiev, Naukova Dumka Publ., 1986, 344 p. (In Russ.).

6. Виленский Т.В., Хзмалян Д.М. Динамика горения пылевидного топлива. М.: Энергия; 1978. 248 с. Vilensky T.V., Khzmalyan D.M. Dynamics of pulverised fuel combustion. Moscow, Energia Publ., 1978, 248 p. (In Russ.).

7. Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат; 1979. 416 с. Kutateladze S.S. Fundamentals of the heat transfer theory. Moscow, Atomizdat Publ., 1979, 416 p. (In Russ.).

8. Moiseeva K.M., Krainov A.Yu., Krainov D.A. Two-scale mathematical model of combustion of coal–methane–air gas–particle suspension. Combustion, Explosion, and Shock Waves. 2023;59(1):29–38. https://doi.org/10.1134/S0010508223010033

9. Sidorov A.E., Shevchuk V.G. Laminar flame in fine-particle dusts. Combustion, Explosion, and Shock Waves. 2011;47(518–522. https://doi.org/10.1134/S0010508211050042

10. Sidorov A.E., Shevchuk V.G., Kondrat’ev E.N. Conductive-radiative model of a laminar flame in dust suspensions. Combustion, Explosion, and Shock Waves. 2013;49(257–263. https://doi.org/10.1134/S0010508213030015

11. Vasil’ev A.A. Detonation as combustion in a supersonic flow of a combustible mixture. Combustion, Explosion, and Shock Waves. 2022;58(6):696–708. https://doi.org/10.1134/S0010508222060077

12. Shevchuk V.G., Kondrat’ev E.N., Zolotko A.N., Sidorov A. E., Oparin A.S. Wave regimes of dust combustion. Combustion, Explosion, and Shock Waves. 2014;50(80–86. https://doi.org/10.1134/S0010508214010109

13. Черданцев С.В., Ли Хи Ун, Филатов Ю.М., Шлапаков П.А. Определение критической температуры зажигания микрогетерогенных пылегазовоздушных смесей в горных выработках. Горный информационно-аналитический бюллетень. 2018;(1):117–125. https://doi.org/10.25018/0236-1493-2018-1-0-117-125 Cherdantsev S.V., Lee Khi Un, Filatov Yu.M., Shlapakov P.A. Determination of critical ignition temperature of micro-heterogeneous dust/gas-air mixtures in mines. Mining Informational and Analytical Bulletin. 2018;(1):117–125. (In Russ.) https://doi.org/10.25018/0236-1493-2018-1-0-117-125

14. Черданцев С.В., Шлапаков П.А., Шлапаков Е.А., Лебедев К.С., Ерастов А.Ю. Теплофизические и газодинамические условия протекания процессов дефлаграции и детонации в пылегазовоздушных потоках горных выработок вблизи очагов самонагревания. Химическая физика и мезоскопия. 2019;21(2):179–189. https://doi.org/10.15350/17270529.2019.2.20 Cherdantsev S.V., Shlapakov P.A., Shlapakov Е.A., Lebedev K.S., Erastov A.Yu. Thermophysical and gas-dynamic conditions of deflagration and detonation processes in dust-gas-air flows of mine workings near the centers of self-heating. Chemical Physics and Mesoscopy. 2019;21(2):179–189. (In Russ.) https://doi.org/10.15350/17270529.2019.2.20

15. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука; 1974. 331 с. Pontryagin L.S. Ordinary differential equations. Moscow, Nauka Publ., 1974, 331 p. (In Russ.).

16. Самарский А.А., Гулин А.В. Численные методы. М.: Наука; 1989. 432 с. Samarskiy A.A., Gulin A.V. Numerical methods. Moscow, Nauka Publ., 1989, 432 p. (In Russ.).

17. Манзон Б.М. Maple V Power Edition. М.: Филин; 1998. 240 с. Manzon B.M. Maple V Power Edition. Moscow, Filin Publ.; 1998, 240 p. (In Russ.).

18. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Физматлит; 1980. 608 с. Poston T., Stewart I. Catastrophe theory and its applications. Moscow, Fizmatlit Publ., 1980, 608 p. (In Russ.).