Justification of the optimal operating time for the main pumps of a mining hydraulic excavator

DOI: https://doi.org/10.30686/1609-9192-2024-2-116-120

Читать на русскоя языкеM.G. Rakhutin1 , Tran Van Hiep1, Le Van Loi2
1 National University of Science and Technology MISIS, Moscow, Russian Federation
2 Liaoning Technical University, Jinzhou, China

Russian Mining Industry №2 / 2024 стр. 116-120

Abstract: As the pump operates and wears out, the gap in the friction pairs increases and the volumetric efficiency decreases, the pump flow gets reduced, which leads to increasing duration of working and auxiliary operations, the operating cycle of the excavator, a decrease in its productivity and excessive fuel consumption. Infrequent pump replacement can lead to a significant increase in fuel consumption and reduced excavator performance. If the pump is replaced prematurely, its service life will not be used to the full extent. In order to develop a method for establishing optimal operating hours that allow minimizing fuel consumption and the cost of replacing a pump, taking into account operating conditions, a mathematical model of the pump operation is proposed, which makes it possible to obtain an expression for determining the differentiated optimal value of operating time between replacements. A calculation method and a software algorithm have been developed in the MatLab Simulink software suite to calculate the rate of decrease in the volumetric efficiency, as well as to establish the influence of volumetric efficiency on the fuel consumption and performance of a hydraulic excavator to be utilized in the model using the example of the HPV375 pump of the Komatsu PC2000-8 excavator, Based on the proposed mathematical model of the main pumps operation, a method has been developed for calculating the differentiated operating time between replacements of the main pumps of a mining hydraulic excavator, taking into account the rate of decrease in volumetric efficiency, replacement costs and damage due to changes in productivity and excessive fuel consumption. The dependence of the rate of changes in the volumetric efficiency of the pump is presented for the excavation, viscosity, contamination and temperature of the working fluid parameters. A coefficient of “reserve of partial engine power transferred to the pump” is proposed, determined by the ratio of the difference between the average maximum and initial partial power to the value of the initial partial power, which allows estimation of the operating time of the main pumps without affecting productivity of the excavator.

Keywords: mining hydraulic excavator, axial piston pump, pump operation model, optimal pump operating time between replacements

For citation: Rakhutin M.G., Hiep T.V., Loi L.V. Justification of the optimal operating time for the main pumps of a mining hydraulic excavator. Russian Mining Industry. 2024;(2):116–120. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-116-120


Article info

Received: 03.03.2024

Revised: 01.04.2024

Accepted: 01.04.2024


Information about the authors

Maxim G. Rakhutin – Dr. Sci. (Eng.), Professor, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tran Van Hiep – Postgraduate Student, Department of Mining Equipment, Transportation and Mechanical Engineering, National University of Science and Technology MISIS, Moscow, Russian Federation

Le Van Loi – Postgraduate Student, Department of Mechanical Design and Theory, Institute of Mechanical Engineering, Liaoning Technical University, Jinzhou, China


References

1. Kapsiz M. The efficiency of mobile hydraulic system with diesel engine and axial piston pump analysis. Journal of Engineering Research. 2022;10(4B):216–228. https://doi.org/10.36909/jer.11137

2. Рахутин М.Г., Занг К.К., Кривенко А.Е., Чан В.Х. Оценка влияния температуры рабочей жидкости на потери мощности карьерного гидравлического экскаватора. Записки Горного института. 2023;261:374–383. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16193 (дата обращения: 09.02.2024). Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator. Journal of Mining Institute. 2023;261:374–383. Available at: https://pmi.spmi.ru/pmi/article/view/16193 (accessed: 09.02.2024).

3. Литвин О.И., Марков С.О., Хорешок А.А., Лапаев М.Н., Тюленев М.А. Определение области энергоэффективного положения рабочего оборудования и эффективного радиуса черпания гидравлических экскаваторов на открытых горных работах. Маркшейдерия и недропользование. 2022;(4):38–44. https://doi.org/10.56195/20793332_2022_4_38 Litvin O.I., Markov S.O., Khoreshok A.A., Lapaev M.N., Tyulenev M.A. Determination of the area of energy-efficient position of working equipment and effective digging radius of hydraulic excavators at open pit mining. Mine Surveying and Subsurface Use. 2022;(4):38–44. (In Russ.) https://doi.org/10.56195/20793332_2022_4_38

4. Li Z., Jiang W., Zhang S., Xue D., Zhang S. Research on prediction method of hydraulic pump remaining useful life based on KPCA and JITL. Applied Sciences. 2021;11(20):9389. https://doi.org/10.3390/app11209389

5. Wu F., Tang J., Jiang Z., Sun Y., Chen Z., Guo B. The remaining useful life prediction method of a hydraulic pump under unknown degradation model with limited data. Sensors. 2023;23(13):5931. https://doi.org/10.3390/s23135931

6. Wu F., Tang J., Jiang Z., Sun Y., Chen Z., Guo B. The remaining useful life prediction method of a hydraulic pump under unknown degradation model with limited data. Sensors. 2023;23(13):5931. https://doi.org/10.3390/s23135931

7. Wu F., Tang J., Jiang Z., Sun Y., Chen Z., Guo B. The remaining useful life prediction method of a hydraulic pump under unknown degradation model with limited data. Sensors. 2023;23(13):5931. https://doi.org/10.3390/s23135931

8. Kujundžić T., Klanfar M., Korman T., Briševac Z. Influence of crushed rock properties on the productivity of a hydraulic excavator. Applied Sciences. 2021;11(5):2345. https://doi.org/10.3390/app11052345

9. Li Y., Mu X., Fan R. Multi-objective optimization and simulation of novel working mechanism for face-shovel excavator. International Journal of Intelligent Robotics and Applications. 2021;5(1):1–9. https://doi.org/10.1007/s41315-020-00160-1

10. Комиссаров А.П., Шестаков В.С., Набиуллин Р.Ш., Хорошавин С.А. Исследование нагруженности рабочего оборудования гидравлического экскаватора «обратная лопата». Горное оборудование и электромеханика. 2021;(6):15–20. https://doi.org/10.26730/1816-4528-2021-6-15-20 Komissarov A.P., Shestakov V.S., Nabiullin R.S., Khoroshavin S.A. Research of loading of working equipment of hydraulic excavator “Back shovel”. Mining Equipment and Electromechanics. 2021;(6):15–20. (In Russ.) https://doi.org/10.26730/1816-4528-2021-6-15-20

11. Безкоровайный П.Г., Шестаков В.С., Нестеров В.И. Оптимизация рабочего оборудования гидравлического экскаватора. Горное оборудование и электромеханика. 2021;(6):3–8. https://doi.org/10.26730/1816-4528-2021-6-3-8 Bezkorovayny P.G., Shestakov V.S., Nesterov V.I. Optimization of work equipment hydraulic excavators. Mining Equipment and Electromechanics. 2021;(6):3–8. (In Russ.) https://doi.org/10.26730/1816-4528-2021-6-3-8

12. Комиссаров А.П., Лагунова Ю.А., Набиуллин Р.Ш., Хорошавин С.А. Цифровая модель процесса экскавации горных пород рабочим оборудованием карьерного экскаватора. Горный информационно-аналитический бюллетень. 2022;(4):156– 168. https://doi.org/10.25018/0236_1493_2022_4_0_156 Komissarov A.P., Lagunova Yu.A., Nabiullin R.Sh., Khoroshavin S.A. Digital model of shovel work process. Mining Informational and Analytical Bulletin. 2022;(4):156–168. (In Russ.) https://doi.org/10.25018/0236_1493_2022_4_0_156

13. Лещинский А.В., Шевкун Е.Б., Вершинина А.Р., Белозеров И.Н. Выбор пути повышения производительности карьерного экскаватора. Маркшейдерия и недропользование. 2021;(4):40–45. Leshhinskij A.V., Shevkun E.B., Vershinina A.R., Belozerov I.N. Choosing a way of improving mine excavator performance. Mine Surveying and Subsurface Use. 2021;(4):40–45. (In Russ.)

14. Литвин О.И., Хорешок А.А., Дубинкин Д.М., Марков С.О., Стенин Д.В., Тюленев М.А. Анализ методик расчета производительности карьерных гидравлических экскаваторов. Горная промышленность. 2022;(5):112–120. https://doi. org/10.30686/1609-9192-2022-5-112-120 Litvin O.I., Khoreshok A.A., Dubinkin D.M., Markov S.O., Stenin D.V., Tyulenev M.A. Analysis of methods for calculating the productivity of open-pit hydraulic shovels and backhoes. Russian Mining Industry. 2022;(5):112–120. (In Russ.) https://doi.org/10.30686/1609-9192-2022-5-112-120

15. Рахутин М.Г. Методология обоснования предельных состояний элементов гидропривода горных машин. Горный информационно-аналитический бюллетень. 2011;(1):508–519. Rakhutin М.G. Methodology of justification of critical condition for elements of hydro drive of mining equipment. Mining Informational and Analytical Bulletin. 2011;(1):508–519. (In Russ.)