Issues related to implementation of big data analytical systems and other digitalization achievements to improve the business efficiency of mining companies
A.M. Balashov
Novosibirsk State Pedagogical University, Novosibirsk, Russian Federation
Russian Mining Industry №3 / 2024 стр. 139-142
Abstract: Currently, digitalization and widespread adoption of digital technologies are significantly changing people's activities in many areas. Digital technologies provide automation of business processes, data management, analytics, they support strategic decision-making and dictate the need to introduce new approaches to doing business in order to increase its efficiency and profitability, as well as to ensure sustainability of companies' development in modern conditions. It needs to be especially mentioned how the big data processing and analysis technologies and other Industry 4.0 achievements are introduced in the mining industry. The use of big data analytical systems in modern production, including the mining industry, provides an integrated approach to processing and analyzing a large amount of information. It also provides organizations with significant advantages reflected at various levels of management and strategic decision-making. The prospects for implementation and development of these digital solutions currently look very encouraging. Effective management of these processes provides companies with significant opportunities and advantages, allowing them to increase competitiveness, optimize the use of resources and increase the efficiency of their business as a whole.
Keywords: digital transformation, big data processing and analysis technologies, operating costs, mining industry
For citation: Balashov A.M. Issues related to implementation of big data analytical systems and other digitalization achievements to improve the business efficiency of mining companies. Russian Mining Industry. 2024;(3):139–142. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-139-142
Article info
Received: 16.04.2024
Revised: 20.05.2024
Accepted: 30.05.2024
Information about the author
Aleksey M. Balashov – Cand. Sci. (Econ.), Associate Professor of the Department Information Systems and Digital Education, Novosibirsk State Pedagogical University, Novosibirsk, Russian Federation; https://orcid.org/0000-0002-4264-2592; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Кабалдин Ю.Г., Шатагин Д.А., Аносов М.С., Колчин П.В. Разработка цифровой модели (двойника) механообрабатывающего предприятия. Journal of Advanced Research in Technical Science. 2019;(13):45–54. https://doi.org/10.26160/2474-5901-2019-13-45-54 Kabaldin Yu.G., Shatagin D.A., Anosov M.S., Kolchin P.V. Development of a digital model (twin) mechanical-processing enterprise. Journal of Advanced Research in Technical Science. 2019;(13):45–54. (In Russ.) https://doi.org/10.26160/2474-5901-2019-13-45-54
2. Стадник Д.А., Габараев О.З., Стадник Н.М., Григорян К.Л. Повышение качества цифровых «двойников» горнодобывающих предприятий на базе стандартизации атрибутивного наполнения технологических 3D-моделей в ГГИС. Горный информационно-аналитический бюллетень. 2020;(11-1):202–212. https://doi.org/10.25018/0236-1493-2020-111-0-202-212 Stadnik D.A., Gabaraev O.Z., Stadnik N.M., Grigoryan K.L. DIgital twin quality improvement for mines through standardization of attribute content for 3D GIS-based geotechnical modeling. Mining Informational and Analytical Bulletin. 2020;(11-1):202–212. (In Russ.) https://doi.org/10.25018/0236-1493-2020-111-0-202-212
3. Паршина И.С., Фролов Е.Б. Разработка цифрового двойника производственной системы на базе современных цифровых технологий. Экономика промышленности. 2020;13(1):29–34. https://doi.org/10.17073/2072-1633-2020-1-29-34 Parshina I.S., Frolov E.B. Development of a digital twin of the production system on the basis of modern digital technologies. Russian Journal of Industrial Economics. 2020;13(1):29-34. (In Russ.) https://doi.org/10.17073/2072-1633-2020-1-29-34
4. Казаков О.Д., Азаренко Н.Ю. Цифровые двойники бизнес-процессов: пространственно-временной слой. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022;(4-2):60–67. Режим доступа: http://www.nauteh-journal.ru/files/226ea44d-e800-4265-bfb4-7d06410ca7e7 (дата обращения: 12.04.2024). Kazakov O.D., Azarenko N.Yu. Digital twins of business processes: spatio-time layer. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Sciences. 2022;(4-2):60–67. (In Russ.) Available at: http://www.nauteh-journal.ru/files/226ea44d-e800-4265-bfb4-7d06410ca7e7 (accessed: 12.04.2024).
5. Пономарев К.С., Феофанов А.Н., Гришина Т.Г. Стратегия цифрового двойника производства как метод цифровой трансформации предприятия. Вестник современных технологий. 2019;(4):23–30. Ponomarev K.S., Feofanov A.N., Grishina T.G. Strategy of a digital twin of manufactory as a method of digital enterprise transformation. Vestnik Sovremennykh Tekhnologii. 2019;(4):23–30. (In Russ.)
6. Силен Д. Основы Data Science, Big Data. Python и наука о данных. М.: Питер; 2017. 354 c.
7. Михнев И.П., Челнокова А.Д., Реут А.Д. Технологии Big Data и их применение в сфере современного высшего образования. В кн.: Развитие современного образования: от теории к практике: материалы 4-й Междунар. науч.-практ. конф., Чебоксары, 19 марта 2018 г. Чебоксары: ЦНС «Интерактив плюс»; 2018. С. 14–18. https://doi.org/10.21661/r-470090
8. Фрэнкс Б. Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики. М.: Альпина Диджитал; 2014. 370 c.
9. Доррер М.Г. Реализация цифрового двойника бизнес-процессов на базе системы ELMA. ИТНОУ: Информационные технологии в науке, образовании и управлении. 2021;(1):35–43. Dorrer M.G. ELMA-based digital business process double. ITNOU: Informatsionnye Tekhnologii v Nauke, Obrazovanii i Upravlenii. 2021;(1):35–43. (In Russ.)