Studies of the spatial and temporal patterns of seismic activity development in the undermined rock mass at the Rasvumchorr Mine

DOI: https://doi.org/10.30686/1609-9192-2024-3-105-111

Читать на русскоя языкеO.G. Zhuravleva, S.A. Zhukova
Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №3 / 2024 стр. 105-111

Abstract: Studies of the spatial and temporal patterns of seismic activity development in the undermined rock mass have been performed at the Rasvumchorr Mine. The main cluster associated with generation of rock caving in the overhang part has been identified. It is established that caving was developing gradually from the depth of the rock mass towards the surface. The results are presented of estimating the quantitative parameters of the seismic process in the undermined rock stratum, i.e. the energy index and the cumulative apparent volume, which reflect the stress changes in the rock mass. Ranges of the stable state of the rock mass, when the overhang rocks do not cave, as well as the ranges of active fracturing and caving of the overhang rocks have been identified. Changes in these parameters for the studied area of the deposit reflect the loading and strength degradation stages in the rock mass. The results of this study correlate well with the data on actual caving of the undermined rock strata. This work is a continuation of the authors' research into the problem of identifying spatial and temporal patterns in the development of undermined rock strata cavings in the tectonically stressed Khibiny massif.

Keywords: seismic monitoring, mining-induced seismicity, underground mining operations, undermined rock caving processes, energy index, cumulative apparent volume, apatite-nepheline deposits, the Khibiny massif

Acknowledgements: This work was supported by a grant from the Russian Science Foundation (project No.22-17-00248). The authors express their sincere gratitude to V.S. Onuprienko, Chief Engineer of the Kirovsk Branch of Apatit JSC, and A.A. Streshnev, Head of the Service for Rock Burst Prediction and Prevention, Kirovsk Branch of Apatit JSC, for many years of fruitful co-operation, provision of seismic monitoring data and discussion of the study results.

For citation: Zhuravleva O.G., Zhukova S.A. Studies of the spatial and temporal patterns of seismic activity development in the undermined rock mass at the Rasvumchorr Mine. Russian Mining Industry. 2024;(3):105–111. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-105-111


Article info

Received: 20.03.2024

Revised: 06.05.2024

Accepted: 11.05.2024


Information about the authors

Olga G. Zhuravleva – Cand. Sci. (Eng.), Senior Researcher, Laboratory of Prediction of rockburst hazard of rock deposits, Rock Mechanics Department, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0002-8986-9559; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Svetlana A. Zhukova – Cand. Sci. (Eng.), Senior Researcher, Laboratory of Prediction of rockburst hazard of rock deposits, Rock Mechanics Department, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0003-0769-6584; e-mail: svetlana. This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Абрашитов А.Ю., Шабаров А.Н., Корчак П.А., Куранов А.Д. Опыт взаимодействия с горным предприятием при решении проблем геодинамической безопасности. Горный журнал. 2023;(5):40–48. https://doi.org/10.17580/gzh.2023.05.06 Abrashitov A.Yu., Shabarov A.N., Korchak P.A., Kuranov A.D. Dealing with geodynamic safety challenges in cooperation with a mining company: A case-study. Gornyi Zhurnal. 2023;(5):40–48. (In Russ.) https://doi.org/10.17580/gzh.2023.05.06

2. Семенова И.Э., Розанов И.Ю., Кулькова М.С. Комплексное исследование параметров обрушения подработанной толщи пород Ждановского месторождения. Горный журнал. 2023;(12):49–54. https://doi.org/10.17580/gzh.2023.12.08 Semenova I.E., Rozanov I.Yu., Kulkova M.S. Integrated research of undermined rock mass failure parameters in Zhdanovskoe ore field. Gornyi Zhurnal. 2023;(12):49–54. (In Russ.) https://doi.org/10.17580/gzh.2023.12.08

3. Семенова И.Э., Аветисян И.М., Журавлева О.Г., Белогородцев О.В. Актуальные вопросы процессов обрушения подработанных пород на Хибинских апатитовых рудниках. Физико-технические проблемы разработки полезных ископаемых. 2022;(6):133–140. https://doi.org/10.15372/FTPRPI20220614 Semenova I.E., Avetisyan I.M., Zhuravleva O.G., Belogorodtsev O.V. Undermined rock failure in apatite mines in Khibiny: topical problems. Journal of Mining Science. 2022;58(6):1010–1015. https://doi.org/10.1134/S1062739122060151

4. Волченко Г.Н., Серяков В.М., Фрянов В.Н. Геомеханическое обоснование ресурсосберегающих вариантов разработки рудных месторождений системой этажного принудительного обрушения. Физико-технические проблемы разработки полезных ископаемых. 2012;(4):144–154. Volchenko G.N., Fryanov V.N., Seryakov V.M. Geomechanical substantiation of the resource-saving alternatives of the induced block caving method. Journal of Mining Science. 2012;48(4):709–716. https://doi.org/10.1134/S1062739148040168

5. Рассказов И.Ю., Федотова Ю.В., Аникин П.А., Сидляр А.В., Корчак П.А. Совершенствование автоматизированной системы геомеханического мониторинга и раннего предупреждения опасных геодинамических явлений. Горный информационно-аналитический бюллетень. 2022;(12-1):106–121. https://doi.org/10.25018/0236_1493_2022_121_0_106 Rasskazov I.Yu., Fedotova Yu.V., Anikin P.A., Sidlyar A.V., Korchak P.A. Improvement of the automated system of geomechanical monitoring and early prevention of dangerous geodynamic phenomena. Mining Informational and Analytical Bulletin. 2022;(12-1):106–121. (In Russ.) https://doi.org/10.25018/0236_1493_2022_121_0_106

6. Рукавишников Г.Д., Мулёв С.Н., Гаврилов А.Г. Опыт применения и перспективы развития системы сейсмического мониторинга ГИТС на Таштагольском железорудном месторождении. Горная промышленность. 2023;(S1):90–95. https://doi.org/10.30686/1609-9192-2023-S1-90-95 Rukavishnikov G.D., Mulev S.N., A. Gavrilov G. Experience of application and prospects for the development of the GITS seismic monitoring system at the Tashtagolsky iron ore deposit. Russian Mining Industry. 2023;(1 Suppl.):90–95. (In Russ.) https://doi.org/10.30686/1609-9192-2023-S1-90-95

7. Верхоланцев А.В., Дягилев Р.А., Шулаков Д.Ю., Шкурко А.В. Мониторинг сейсмического воздействия взрывов на карьере «Шахтау». Физико-технические проблемы разработки полезных ископаемых. 2019;(2):59–69. https://doi.org/10.15372/FTPRPI20190207 Verkholantsev A.V., Dyagilev R.A., Shulakov D.Y., Shkurko A.V. Monitoring of earthquake loads from blasting in the Shakhtau open pit mine. Journal of Mining Science. 2019;55(2):229–238. https://doi.org/10.1134/S1062739119025503

8. Семенова И.Э., Аветисян И.М. Прогноз удароопасности перспективных участков отработки Хибинской апатитовой дуги. Горная промышленность. 2023;(S1):43–47. https://doi.org/10.30686/1609-9192-2023-S1-43-47 Semenova I.E., Avetisyan I.M. Prediction of rockburst hazards in prospective mining areas of the Khibiny Apatite Arc. Russian Mining Industry. 2023;(1 Suppl.):43–47. (In Russ.) https://doi.org/10.30686/1609-9192-2023-S1-43-47

9. Козырев А.А., Семенова И.Э., Журавлева О.Г., Пантелеев А.В. Гипотеза происхождения сильного сейсмического события на Расвумчоррском руднике 09.01.2018. Горный информационно-аналитический бюллетень. 2018;(12):74–83. https://doi.org/10.25018/0236-1493-2018-12-0-74-83 Kozyrev A.А., Semenova I.E., Zhuravleva O.G., Panteleev A.V. Hypothesis of strong seismic event origin in Rasvumchorr mine on January 9, 2018. Mining Informational and Analytical Bulletin. 2018;(12):74–83. (In Russ.) https://doi.org/10.25018/0236-1493-2018-12-0-74-83

10. Жукова С.А., Журавлева О.Г., Онуприенко В.С., Стрешнев А.А. Изменение потока сейсмической энергии при переходе на глубокие горизонты (месторождение Апатитовый Цирк, Хибинский массив). Горная промышленность. 2023;(4):110–116. https://doi.org/10.30686/1609-9192-2023-4-110-116 Zhukova S.A., Zhuravleva O.G., Onuprienko V.S., Streshnev A.A. Changes in the seismic energy flow when mining deep levels (the Apatite Circus deposit, Khibiny Massif). Russian Mining Industry. 2023;(4):110–116. (In Russ.) https://doi.org/10.30686/1609-9192-2023-4-110-116

11. Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 3. Динамический закон Бота. Физика Земли. 2018;(6):129–136. https://doi.org/10.1134/S0002333718060029 Baranov S.V., Shebalin P.N. Forecasting aftershock activity: 3. Båth’s dynamic law. Izvestiya, Physics of the Solid Earth. 2018;54(6):926–932. https://doi.org/10.1134/S1069351318060022

12. Benali A., Peresan A., Varini E., Talbi A. Modelling background seismicity components identified by nearest neighbour and stochastic declustering approaches: the case of Northeastern Italy. Stochastic Environmental Research and Risk Assessment. 2020;34(6):775–791. https://doi.org/10.1007/s00477-020-01798-w

13. Zaliapin I., Gabrielov A., Keilis-Borok V., Wong H. Clustering analysis of seismicity and aftershock identification. Physical Review Letters. 2008;101(1):018501. https://doi.org/10.1103/PhysRevLett.101.018501

14. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research: Solid Earth. 2013;118(6):2847–2864. https://doi.org/10.1002/jgrb.50179

15. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California II: Classification and relation to physical properties of the crust. Journal of Geophysical Research: Solid Earth. 2013;118(6):2865–2877. https://doi.org/10.1002/jgrb.50178

16. Герман В.И. Прогноз обрушений на рудниках по данным сейсмического мониторинга. Физико-технические проблемы разработки полезных ископаемых. 2014;(2):99–109. Режим доступа: https://www.sibran.ru/upload/iblock/c95/c952a98760 6b0b8b645e720a8648cd10.pdf (дата обращения: 01.04.2024). German V.I. Rock failure prediction in mines by seismic monitoring data. Journal of Mining Science. 2014;50(2):288–297. https://doi.org/10.1134/S1062739114020124

17. Козырев А.А., Журавлева О.Г., Жукова С.А. Пространственно-временные вариации сейсмичности в районе Саамского разлома (Хибинский массив, Кольский полуостров). Горный журнал. 2023;(1):79–84. https://doi.org/10.17580/gzh.2023.01.13 Kozyrev A.A., Zhuravleva O.G., Zhukova S.A. Seismicity variations in space and time in the area of the Saamy fault, Khibiny Massif, Kola Peninsula. Gornyi Zhurnal. 2023;(1):79–84. (In Russ.) https://doi.org/10.17580/gzh.2023.01.13

18. Mendecki A.J. Real time quantitative seismology in mines: Keynote address. In: Rockburst and Seismicity in Mines-RaSiM2: Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines, Kingston, Ontario, Canada. Rotterdam: Balkema; 1993, pp. 287–295. Available at: https://www.researchgate.net/publication/259741668 (accessed: 02.04.2024).

19. Mendecki A.J. (ed.) Seismic monitoring in mines. London: Chapman and Hall; 1997. 262 p. https://doi.org/10.1007/978-94-009-1539-8

20. van Aswegen G., Butler A. Applications of quantitative seismology in South African gold mines. In: Rockburst and Seismicity in Mines-RaSiM2: Proceedings of the 3rd International Symposium on Rockbursts and Seismicity in Mines, Kingston, Ontario, Canada. Rotterdam: Balkema; 1993. pp. 261–266. Available at: https://www.researchgate.net/publication/259741923 (accessed: 02.04.2024).

21. van Aswegen G. Routine seismic hazard assessment in some South African mines. In: Potvin Y., Hudyma M. (eds) RaSiM6: Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines Proceedings. Australian Centre for Geomechanics, Perth; 2005, pp. 437–444. https://doi.org/10.36487/ACG_repo/574_45

22. Мельников Н.Н. (ред.) Методы и системы сейсмодеформационного мониторинга техногенных землетрясений и горных ударов. Новосибирск: СО РАН; 2010. Т. 2. 261 с. Режим доступа: https://www.geokniga.org/books/21804 (дата обращения: 01.04.2024).

23. Liu J.-P., Xu S.-d., Li Y.-h., Lei G. Analysis of rock mass stability based on mining-induced seismicity: A case study at the Hongtoushan copper mine in China. Rock Mechanics and Rock Engineering. 2019;52(1):265–276. https://doi.org/10.1007/s00603-018-1541-y

24. Nordström E., Dineva S., Nordlund E. Back analysis of short-term seismic hazard indicators of larger seismic events in deep underground mines (LKAB, Kiirunavaara Mine, Sweden). Pure and Applied Geophysics. 2020;177(2):763–785. https://doi.org/10.1007/s00024-019-02352-8

25. Dehn K.K., Butler T., Weston B. Using the energy index method to evaluate seismic hazards in an underground narrow-vein metal mine. In: Paper presented at the 52nd U.S. Rock Mechanics / Geomechanics Symposium, Seattle, Washington, June 2018. Available at: https://www.researchgate.net/publication/329628956 (accessed: 02.04.2024).

26. Li Y., Hongwei D., Lei W., Qin Y., Xu X. Method for identifying and forecasting mining-induced earthquakes based on spatiotemporal characteristics of microseismic activities in Fankou lead/zinc mine. Minerals. 2022;12(3):318. https://doi.org/10.3390/min12030318

27. Li Y., Hongwei D., Lei W., Qin Y., Xu X. Method for identifying and forecasting mining-induced earthquakes based on spatiotemporal characteristics of microseismic activities in Fankou lead/zinc mine. Minerals. 2022;12(3):318. https://doi.org/10.3390/min12030318