Network platform for automation of pit dump truck failure prediction
I.V. Zyryanov1, 2, M.V. Kornyakov2, K.A. Nepomnyashchikh2, A.I. Trufanov2, V.A. Khramovskikh2, A.N. Shevchenko2
1 Polytechnic Institute (branch), M.K. Ammosov North-Eastern Federal University, Mirniy, Russian Federation
2 Irkutsk National Research Technical University, Irkutsk, Russian Federation
Russian Mining Industry №3 / 2024 стр. 56-63
Abstract: The article considers the possibilities of developing an automated system for monitoring and predicting the technical condition of in-pit vehicles at the operation stage based on failure statistics and network analysis of data received from health sensors of the mining machines. This study seeks to reduce emergency downtime in the mining industry by introducing modern information and communication technologies. The applicability of existing methods to analyze digital signals received from the sensors installed on the mining equipment was assessed. A promising approach is considered, using the progress achieved in network engineering and conversion of the time series signals into the integrated networks. A sequence of operations is proposed as an innovation, including collection and analysis of data, development of network prediction models and practical implementation of the results. It is expected that using such a sequence of steps will be able to promptly notify of the need to repair equipment, thereby reducing downtime, which in turn will increase productivity and reduce the operating costs. The main stages of the study are formulated and presented, the implementation of which is aimed at predicting the health of the equipment, identifying the need for unscheduled repairs, which will lead to a decrease in the number of emergency failures or their prevention in real operating conditions of mining enterprises.
Keywords: reliability of mining machinery and equipment, digital signal, network analysis of time series, network markers of equipment operability, failure prediction, mining dump trucks, internal combustion engine
Acknowledgements: The research was partially financed by the Russian Foundation for Basic Research and the Ministry of Education, Culture, Science and Sports of Mongolia under Research Project No.20-57-44002.
For citation: Zyryanov I.V., Kornyakov M.V., Nepomnyashchikh K.A., Trufanov A.I., Khramovskikh V.A., Shevchenko A.N. Network platform for automation of pit dump truck failure prediction. Russian Mining Industry. 2024;(3):56–63. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-56-63
Article info
Received: 27.03.2024
Revised: 08.05.2024
Accepted: 12.05.2024
Information about the authors
Igor V. Zyryanov – Dr. Sci. (Eng.), Professor, Head of the Mining Department of the Polytechnic Institute (branch), M.K. Ammosov North-Eastern Federal University, Mirniy, Russian Federation; Professor the Department of Mining Machinery and Electromechanical Systems, Institute of Subsoil Use, Irkutsk National Research Technical University, Irkutsk, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Mikhail V. Kornyakov – Dr. Sci. (Eng.), Associate Professor, Rector, Chairman of the Academic Council, Chairman of the Scientific and Technical Council, President of the bandy team, President of the All-Russian Student Bandy League. Institute of Subsoil Use, Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Kirill A. Nepomnyashchikh – Postgraduate Student, Assistant at the Department of Mining Machinery and Electromechanical Systems, Institute of Subsoil Use, Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Andrey I. Trufanov – Candi. Sci. (Phys. and Math.), Associate Professor, Institute of Information Technology and Data Analysis, Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Vitaly A. Khramovskikh – Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Mining Machines and Electromechanical Systems, Acting Head of the Department of GMiEMS, Institute of Subsoil Use, Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexey N. Shevchenko – Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Mining Machinery and Electromechanical Systems, Director of the Institute of Subsoil Use, Irkutsk National Research Technical University, Irkutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Великанов В.С., Мусонов О.С., Панфилова О.Р., Ильина Е.А., Дёрина Н.В. Инструменты предиктивной аналитики в минимизации отказов горнотранспортного оборудования. Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2021;19(4):5–15. https://doi.org/10.18503/1995-2732-2021-19-4-5-15 Velikanov V.S., Musonov O.S., Panfilova O.R., Ilina E.A., Dyorina N.V. Predictive analytics tools in minimising mining equipment failures. Vestnik of Nosov Magnitogorsk State Technical University. 2021;19(4):5–15. (In Russ.) https://doi.org/10.18503/1995-2732-2021-19-4-5-15
2. Балакин Ю.А., Вылцан С.С., Должко Д.М. Влияние технического диагностирования на повышение точности прогнозирования остаточного срока службы горнотранспортного оборудования. Молодой ученый. 2015;(7):88–91. Режим доступа: https://moluch.ru/archive/87/16626/ (дата обращения: 04.12.2023). Balakin N.A., Vyltsan S.S., Dolzhko D.M. The influence of a feasibility study on improving the accuracy of forecasting using the mining equipment service. Molodoy Ucheniy. 2015;(7):88–91. (In Russ.) Available at: https://moluch.ru/archive/87/16626 / (accessed: 04.12.2023).
3. Храмовских В.А., Шевченко А.Н., Непомнящих К.А. Адаптивный интеллектуальный анализ данных как инструмент для прогнозирования ресурса узлов горных машин и оборудования. Науки о Земле и недропользование. 2023;46(2):212–225. https://doi.org/10.21285/2686-9993-2023-46-2-212-225 Khramovskikh V.A., Shevchenko A.N., Nepomnyashchikh K.A. Adaptive data mining as a tool to predict mining machinery and equipment assembly life. Earth Sciences and Subsoil Use. 2023;46(2):212–225. (In Russ.) https://doi.org/10.21285/2686-9993-2023-46-2-212-225.
4. Гришин И.А., Великанов В.С., Назаров О.В., Дёрина Н.В. О возможности использования метода локальной аппроксимации для прогноза нерегулярных временных рядов отказов горнотранспортных машин. Уголь. 2022;(3):84–89. https://doi.org/10.18796/0041-5790-2022-3-84-89 Grishin I.A., Velikanov V.S., Nazarov O.V., Dyorina N.V. On the possibility of using the local approximation method to predict irregular time series of mining machine failures. Ugol’. 2022;(3):84–89. (In Russ.) https://doi.org/10.18796/0041-5790-2022-3-84-89
5. Ромашихин М.Ю., Горбоконенко П.А. Реализация оконного преобразования Фурье на FPGA для спектрального анализа нестационарных сигналов. В кн.: Юрасова Н.В. (ред.) Инновационные технологии, в электронике и приборостроении: сб. докл. Российской науч.-техн. конф. с междунар. участием, г. Москва, 5–12 апр. 2021 г. М.: МИРЭА – Российский технологический университет; 2021. Т. 1. С. 177–182.
6. Долгих Н.Н., Набиуллин Р.А., Шаповалов П.В., Шумская Н.В. Обзор методов применения вейвлет преобразования для анализа искажения показателей качества электроэнергии в системах электроснабжения. В кн.: Технические науки – от теории к практике: сб. материалов 52-й Междунар. науч.-практ. конф. Новосибирск: СибАК; 2015. С. 114–120.
7. Потапов А.А. Фрактальные модели и методы на основе скейлинга в фундаментальных и прикладных проблемах современной физики. В кн.: Горелик В.С., Морозов А.Н. (ред.). Необратимые процессы в природе и технике: сб. науч. тр. М.: МГТУ им. Н.Э. Баумана; 2008. Вып. 2. С. 5–107.
8. Marwan N., Carmen Romano M., Thiel M., Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438:237–329. https://doi.org/10.1016/j.physrep.2006.11.001
9. Бельков С.А., Малыгин И.В. Использование нейронной сети для обнаружения и идентификации помех при приеме шумоподобного сигнала. Физика волновых процессов и радиотехнические системы. 2019;22(2):37–43. https://doi.org/10.18469/1810-3189.2019.22.2.37-43 Belkov S.A., Malygin I.V. Use of the neural network for detection and identification of interference when receiving a spread spectrum signal. Physics of Wave Processes and Radio Systems. 2019;22(2):37–43. (In Russ.) https://doi.org/10.18469/1810-3189.2019.22.2.37-43
10. Меркушева А.В. Применение нейронной сети для текущего анализа нестационарного сигнала (речи), представленного его вейвлет-отображением. II. Исследование и оптимизация нейронной сети. Научное приборостроение. 2003;13(1):72–84. Меrkusheva А.V. Application of a neural network to on-line analysis of non-stationary (speech) signals represented by their wavelet transform. II. Study and optimization of the neural network. Nauchnoe Priborostroenie. 2003;13(1):72–84. (In Russ.)
11. Vespignani A. Twenty years of network science. Nature. 2018;558(7711):528–529. https://doi.org/10.1038/d41586-018-05444-y
12. Silva V.F., Silva M.E., Ribeiro P., Silva F. Time series analysis via network science: Concepts and algorithms. WIREs Data Mining and Knowledge Discovery. 2021;11(3):e1404. https://doi.org/10.1002/widm.1404
13. Ferreira L.N. From Time Series to Networks in R with the ts2net Package. arXiv:2208.09660 [cs.SI]. https://doi.org/10.48550/arXiv.2208.09660
14. Luque B., Lacasa L., Ballesteros F., Luque J. Horizontal visibility graphs: Exact results for random time series. Physical Review E. 2009;80(4):046103. https://doi.org/10.1103/physreve.80.046103
15. Carmona-Cabezas R., Gomez-Gomez J., Gutierrez de Rave E., Jimenez-Hornero F.J. A sliding window-based algorithm for faster transformation of time series into complex networks. Chaos. 2019;29(10):103121. https://doi.org/10.1063/1.5112782
16. Bastian M., Heymann S., Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009;3(1):361–362. https://doi.org/10.1609/icwsm.v3i1.13937