Designing modern Russian crushing and transfer units for conveyor ore transportation systems

DOI: https://doi.org/10.30686/1609-9192-2024-3-48-55

Читать на русскоя языкеR.I. Ismagilov1, A.G. Zhuravlev2, V.O. Furin3
1 Metalloinvest Management Company LLC, Moscow, Russian Federation
2 Institute of Mining of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation
3 Uralmashplant JSC, Ekaterinburg, Russian Federation

Russian Mining Industry №3 / 2024 стр. 48-55

Abstract: The article discusses methodological aspects of designing semi-stationary and mobile crushing and transfer units (DPU) carried out by the experts of Uralmashzavod PJSC and IGD Ural Branch of the Russian Academy of Sciences on behalf of the Russian Metalloinvest company during the development of the Russian DPU-7200 model. As the result of the R&D work performed, a DPU was manufactured and installed at a mining operation as part of the in-pit crushing and conveyor (IPCC) systems, which is intended for conveyor transportation of ore from the open pit. A distinctive feature of the discussed DPU is that it is made as a complete system with the supporting steel structures integrated in its design, which makes it possible to relocate it during the service life when expanding the IPCC. The issues concerned with justifying the DPU layout, parameters of the receiving and unloading hoppers are discussed with account of structural, strength, mining and technological factors. The paper presents the technical characteristics of the developed DPU, as well as the design features of the primary equipment. The impact of the related technological factors, i.e. irregular character of dump truck traffic, the technological and temporal modes of the IPCC operation in general and those of the DPU in particular, the designed schedule of maintenance and repair, etc., is shown.

Keywords: crushing and transfer unit, in-pit crushing and conveyor system, layout design, hopper, cone crusher

For citation: Ismagilov R.I., Zhuravlev A.G., Furin V.O. Designing modern Russian crushing and transfer units for conveyor ore transportation systems. Russian Mining Industry. 2024;(3):48–55. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-48-55


Article info

Received: 25.03.2024

Revised: 08.05.2024

Accepted: 12.05.2024


Information about the authors

Rinat I. Ismagilov – Director of Technical Development, Metalloinvest Management Company LLC, Moscow, Russian Federation

Artem G. Zhuravlev – Cand. Sci. (Eng.), Laboratory Chief, Institute of Mining of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Vitaly O. Furin – Cand. Sci. (Eng.), Deputy Chief Designer for Crushing and Milling, Uralmashplant JSC, Ekaterinburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Глебов А.В., Семенкин А.В., Кармаев Г.Д., Берсенев В.А. Новые подходы и решения по применению циклично-поточной технологии на карьерах. Горный журнал. 2017;(6):49–52. https://doi.org/10.17580/gzh.2017.06.09 Glebov A.V., Semenkin A.V., Karmayev G.D., Bersenev V.A. New approaches and solutions on application of cyclical-andcontinuous technology in open pit mines. Gornyi Zhurnal. 2017;(6):49–52. (In Russ.) https://doi.org/10.17580/gzh.2017.06.09

2. Журавлёв А.Г., Семёнкин А.В., Черепанов В.А., Глебов И.А., Чендырев М.А. Задачи развития перспективных циклично-поточных технологий для глубоких карьеров. Горная промышленность. 2022;(1S):53–62. https://doi.org/10.30686/1609-9192-2022-1S-53-62 Zhuravlev A.G., Semenkin A.V., Cherepanov V.A., Glebov I.A., Chendyrev M.A. The purpose of developing advanced in-pit crushing and conveying technology for deep open pits. Russian Mining Industry. 2022;(1 Suppl.): 53–62. (In Russ.) https://doi.org/10.30686/1609-9192-2022-1S-53-62

3. Чиркин А.А., Кантемиров В.Д. Обоснование методики проектирования передвижных дробильно-перегрузочных установок. Известия высших учебных заведений. Горный журнал. 2020;(7):33–40. https://doi.org/10.21440/0536-1028-2020-7-33-40 Chirkin A.A., Kantemirov V.D. Rationale for mobile crushing plants design methodology. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2020;(7):33–40. (In Russ.) https://doi.org/10.21440/0536-1028-2020-7-33-40

4. Груздев А.В., Осадчий А.М., Фурин В.О. Стационарные и полустационарные дробильно-перегрузочные установки Уралмашзавода. Горный журнал. 2012;(11):70–72. Режим доступа: https://www.rudmet.ru/journal/965/article/15181/ (дата обращения: 14.02.2024). Gruzdev A.V., Osadchiy A.M., Furin V.O. The stationary and semiportable crushing transfers of Uralmash Machine-Building Corporation. Gornyi Zhurnal. 2012;(11):70–72. (In Russ.) Available at: https://www.rudmet.ru/journal/965/article/15181/ (accessed: 14.02.2024).

5. Чендырев М.А., Журавлев А.Г. Рационализация геометрических параметров приемных бункеров дробилок ККД при автомобильном транспорте. Горный информационно-аналитический бюллетень. 2022;(5-1):158–170. https://doi.org/10.25018/0236_1493_2022_51_0_158 Zhuravlev A.G., Chendyrev M.A. Rationalization of geometric parameters receptions bunkers primary gyratory cone crusher for automotive transport. Mining Informational and Analytical Bulletin. 2022;(5-1):158–170. (In Russ.) https://doi.org/10.25018/0236_1493_2022_51_0_158

6. Юдин А.В., Шестаков В.С., Саитов В.И., Абдулкаримов М.К. К определению вместимости бункера в составе перегрузочной системы при комбинированном транспорте. Известия высших учебных заведений. Горный журнал. 2020;(4):99– 112. https://doi.org/10.21440/0536-1028-2020-4-99-112 Iudin A.V., Shestakov V.S., Saitov V.I., Abdulkarimov M.K. Determining the capacity of a bunker as a part of the handling system with combined transport. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2020;(4):99–112. (In Russ.) https://doi.org/10.21440/0536-1028-2020-4-99-112

7. Липатов А.Г., Фурин В.О., Холодков А.А., Журавлев А.Г. Инновационные решения в повышении эффективности крупного дробления на железорудных горно-обогатительных комбинатах. Горная промышленность. 2023;(3):93–100. https://doi.org/10.30686/1609-9192-2023-3-93-100 Lipatov A.G., Furin V.O., Kholodkov A.A., Zhuravlev A.G. Innovative solutions to improve the efficiency of coarse crushing in iron ore mining and processing plants. Russian Mining Industry. 2023;(3):93–100. (In Russ.) https://doi.org/10.30686/1609-9192-2023-3-93-100

8. Fisher T. Stationary and semi-mobile crushing plants – a comparison: Theoretical considerations. Cement International. 2017;15(4):66–69.

9. Abbaspour H., Drebenshtedt C., Parisheh M., Ritter R. Optimum location and relocation plan of semi-mobile in-pit crushing and conveying systems in open-pit mines by transportation problem. International Journal of Mining Reclamation and Environment. 2019;33(5):297–317. https://doi.org/10.1080/17480930.2018.1435968

10. Osanloo M., Paricheh M. In-pit crushing and conveying technology in open-pit mining operations: a literature review and research agenda. International Journal of Mining, Reclamation and Environment. 2020;34(6):430–457. https://doi.org/10.1080/17480930.2019.1565054

11. Purhamadani E., Bagherpour R., Tudeshki H. Energy consumption in open-pit mining operations relying on reduced energy consumption for haulage using in-pit crusher systems. Journal of Cleaner Production. 2021;291:125228. https://doi.org/10.1016/j.jclepro.2020.125228

12. Yamashita A.S., Thivierge A., Euzébio T.A.M. A review of modeling and control strategies for cone crushers in the mineral processing and quarrying industries. Minerals Engineering. 2021;170:107036. https://doi.org/10.1016/j.mineng.2021.107036

13. Chen Z., Wang G., Xue D., Bi Q. Simulation and optimization of gyratory crusher performance based on the discrete element method. Powder Technology. 2020;376:93–103. https://doi.org/10.1016/j.powtec.2020.07.034