Improving the efficiency of forecasting seismic activity during mining of coal reserves in mines using neural network algorithms
R.Y. Zamaraev, P.V. Grechishkin, O.L. Giniyatullina
Kemerovo Branch, VNIMI JSC, Kemerovo, Russian Federation
Russian Mining Industry №3S / 2024 стр. 57-62
Abstract: A new approach is proposed to the real-time forecasting of seismicity during mining operations in underground mines. It is based on an original approach to forecasting of non-stationary irregular time series using a classifier based on a neural network with the SWIN Transformer architecture. The main task solved is to develop a system to convert standard seismic data on coordinates and magnitudes of events into an image that can be analyzed by a neural network. The forecast is represented as the probability that no event with energy higher than the set limit for the class will occur within the forecast interval. Three classes of events, i.e. with high, medium or low energy, are introduced, the boundaries between which are defined by statistical characteristics of the current data magnitudes. The forecast interval is defined by the number of future events. Using data from one of the mines as a case study, the properties of coordinate and magnitude distributions are assessed, the accuracy of the model depending on the compilation parameters of the dataset is evaluated, and examples of forecasts made using historical data are provided.
Keywords: underground mining, seismicity, irregular time series, neural networks
For citation: Zamaraev R.Y., Grechishkin P.V., Giniyatullina O.L. Improving the efficiency of forecasting seismic activity during mining of coal reserves in mines using neural network algorithms. Russian Mining Industry. 2024;(3S):57–62. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3S-57-62
Article info
Received: 03.06.2024
Revised: 16.07.2024
Accepted: 16.07.2024
Information about the authors
Roman Y. Zamaraev – Cand. Sci. (Eng.), Research Associate, Kemerovo Branch, VNIMI JSC, Kemerovo, Russian Federation
Pavel V. Grechishkin – Cand. Sci. (Eng.), Director, Kemerovo Branch, VNIMI JSC, Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Olga L. Giniyatullinа – Cand. Sci. (Eng.), Senior Research Associate, Kemerovo Branch, VNIMI JSC, Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Utsu T., Ogata Y., Matsu’ura R.S. The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth. 1995;43(1):1–33. https://doi.org/10.4294/jpe1952.43.1
2. Helmstetter A., Werner M.J. Adaptive smoothing of seismicity in time, space, and magnitude for time‐dependent earthquake forecasts for California. Bulletin of the Seismological Society of America. 2014;104(2):809–822. https://doi.org/10.1785/0120130105
3. Kijko A., Funk C.W. The assessment of seismic hazards in mines. The Journal of The South African Institute of Mining and Metallurgy. 1994;94:179–185.
4. Маловичко А.А., Завьялов А.Д., Козырев А.А. Горные удары. В кн.: Соболев Г.А. (ред.) Природные опасности России. Т. 1. Сейсмические опасности. М.: Крук; 2000. С. 243–293.
5. Мельников Н.Н. (ред.). Сейсмичность при горных работах. Апатиты: Кольский научный центр РАН; 2002. 325 с.
6. Мустафин М.Г. Механизм возникновения горных ударов с разрушением почвы выработок. Записки Горного института. 2016;217:40–48. Режим доступа: https://pmi.spmi.ru/pmi/article/view/5080 (дата обращения: 15.05.2024). Mustafin M.G. The mechanism of rock burst leading to ground destruction of mine openings. Journal of Mining Institute. 2016;217:40–48. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/5080 (accessed: 15.05.2024).
7. van Aswegen G. Routine seismic hazard assessment in mines. In: Potvin Y., Hudyma M. (eds). RaSiM6: Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines Proceedings. Perth: Australian Centre for Geomechanics; 2005, pp. 437–444. https://doi.org/10.36487/ACG_repo/574_45
8. Mendecki A.J. Forecasting seismic hazard in mines. In: Potvin Y., Carter J., Dyskin A., Jeffrey R. (eds) SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium. Perth: Australian Centre for Geomechanics; 2008, pp. 55–69. https://doi.org/10.36487/ACG_repo/808_101
9. Nordström E., Dineva S., Nordlund E. Back analysis of short-term seismic hazard indicators of larger seismic events in deep underground mines (LKAB, Kiirunavaara Mine, Sweden). Pure and Applied Geophysics. 2020;177(2):763–785. https://doi.org/10.1007/s00024-019-02352-8
10. Разумов Е.Е., Рукавишников Г.Д., Мулёв С.Н., Простов С.М. Анализ сейсмической активности массива при ведении горных работ на шахте «Комсомольская» АО «Воркутауголь». Горный информационно-аналитический бюллетень. 2022;(1):104–114. https://doi.org/10.25018/0236_1493_2022_1_0_104 Razumov E.E., Rukavishnikov G.D., Mulev S.N., Prostov S.M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya mine. Mining Informational and Analytical Bulletin. 2022;(1):104–114. (In Russ.) https://doi.org/10.25018/0236_1493_2022_1_0_104
11. Jakubowski J., Tajdus A. Predictive regression models of monthly seismic energy emissions induced by longwall mining. Archives of Mining Sciences. 2014;59(3):705–720. https://doi.org/10.2478/amsc-2014-0049
12. Jakubowski J. A predictive model of daily seismic activity induced by mining, developed with data mining methods. Geoinformatica Polonica. 2014;13(1):7–19. https://doi.org/10.2478/gein-2014-0001
13. MacQueen J. Some methods for classification and analysis of multivariate observations. In: Le Cam L.M., Neyman J. (eds) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University of California Press; 1967, pp. 281–297. Available at:https://sci2s.ugr.es/keel/pdf/algorithm/congreso/1967-MacQueen-MSP.pdf (accessed: 15.05.2024).
14. Rousseeuw P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. 1987;20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7
15. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N. et al. Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; 2017, pp. 1–11.
16. Liu Z., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. IEEE; 2021, pp. 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986