History of development and prospects for further application of the geodynamic zoning method
A.S. Batugin1 , N.E. Moroz2
1 National University of Science and Technology “MISIS”, Moscow, Russian Federation
2 VNIMI JSC, St. Petersburg, Russian Federation
Russian Mining Industry №3S / 2024 стр. 14-19
Abstract: The paper describes the background for the development of the geodynamic zoning method at VNIMI, which was the leading organization studying the problem of rock bursts, in the Soviet Union. This method is intended for zoning of deposits by the degree of geodynamic hazard and is aimed at assessing the stressed state of rock massif using the general-to-specific principle. The method involves identification of hierarchically ordered block structure of the rock massif; determination of the interaction dynamics between the blocks and assessment of the stressed state of the block massif, including the states upon commencement of the field development; development of recommendations for safe mining operations with account of the results obtained and possible changes in the stressed state of the rock mass under the impact of the mining operations. The method has also found its application in oil fields to identify promising locations for wells, in identifying geodynamically dangerous zones along the railroads and pipelines, residential and industrial areas. Theoretical provisions on the interaction of global geodynamic and local geomechanical processes during mining operations, concepts of the critically stressed state of the Earth's crust from the day-time surface down to a certain depth have been confirmed in practice and in research findings in different countries of the world. Conducting work on geodynamic zoning of coal and ore deposits that are prone to and hazardous in terms of rock bursts is stipulated by the current safety instructions. VNIMI continues to develop theoretical aspects of geodynamic zoning and performs practical work on geomechanical safety in the fields, which is shown using a case study of the Kamchatka region.
Keywords: subsurface geodynamics, block structure, seismicity, rock burst, gas dynamic phenomenon
For citation: Batugin A.S., Moroz N.E. History of development and prospects for further application of the geodynamic zoning method. Russian Mining Industry. 2024;(3S):14–19. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3S-14-19
Article info
Received: 03.05.2024
Revised: 18.06.2024
Accepted: 27.06.2024
Information about the authors
Andrian S. Batugin – Dr. Sci. (Eng.), Professor, Department of Safety and Ecology of Mining Production, National University of Science and Technology “MISIS”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Nikita E. Moroz – Research Scientist, Laboratory of Rock Bumps, JSC "VNIMI", St. Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Петухов И.М. Горные удары на угольных шахтах. М.: Недра; 1972. 221 с.
2. Батугина И.М., Петухов И.М. Геодинамическое районирование при строительстве и эксплуатации рудников. М.: Недра; 1988. 162 с.
3. Петухов И.М., Батугина И.М. Геодинамика недр. 2-е изд., перераб. и доп. М.: Недра коммуникейшэнз; 1999. 287 с.
4. Шабаров А.Н. Научные основы геологического обеспечения безопасной отработки пластовых месторождений в геодинамически опасных зонах: дис. … д-ра техн. наук. М.; 2004. 503 с.
5. Шабаров А.Н., Дупак Ю.Н., Батугин А.С. Тектонически напряженные и разгруженные зоны в горном массиве. Уголь. 1994;(7):28–30. Shabarov A.N., Dupak Yu.N., Batugin A.S. Tectonically stressed and unloaded zones in the rock mass. Ugol’. 1994;(7):28–30. (In Russ.)
6. Петухов И.М. О природе горизонтальных сил в земной коре. В кн.: Норватов Ю.А. (ред.) Изучение и прогноз сдвижений и деформаций массивов горных пород, гидрогеомеханических процессов при разработке месторождений подземным и открытым способом: сб. науч. тр. СПб.: ВНИМИ; 1991.
7. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука; 2003. 270 с.
8. Scholz C.H. The mechanics of earthquakes and faulting. New York: Cambridge University Press; 1990. 439 p.
9. Métivier L., de Viron O., Conrad C.P., Renault S., Diament M., Patau G. Evidence of earthquake triggering by the solid earth tides. Earth and Planetary Science Letters. 2009;278(3-4):370–375. https://doi.org/10.1016/j.epsl.2008.12.024
10. Ellsworth W.L. Injection-induced earthquakes. Science. 2013;341(6142):1225942. https://doi.org/10.1126/science.1225942
11. Тарасов Б.Г. Запредельные свойства горных пород и их связь с динамикой спонтанного разрушения. Горный журнал. 2021;(1):13–19. https://doi.org/10.17580/gzh.2021.01.03 Tarasov B.G. Post-limit properties and correlation with spontaneous fracture dynamics in rocks. Gornyi Zhurnal. 2021;(1):13– 19. (In Russ.) https://doi.org/10.17580/gzh.2021.01.03
12. Townend J., Zoback M.D. How faulting keeps the crust strong. Geology. 2000;28(5):399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
13. Батугин А.С. Геодинамические эффекты предельно напряженного состояния земной коры. Горная промышленность. 2023;(S1):14–21. https://doi.org/10.30686/1609-9192-2023-S1-14-21 Batugin A.S. Geodynamic effects of the critically stressed state of the earth’s crust. Russian Mining Industry. 2023; (1 Suppl.):14–21. (In Russ.) https://doi.org/10.30686/1609-9192-2023-S1-14-21
14. Lan T., Zhang H., Li S., Batugina I., Batugin A. Application and development of the method of geodynamic zoning according to geodynamic hazard forecasting at coal mines in China. IOP Conference Series: Earth and Environmental Science. 2019;221:012088. https://doi.org/10.1088/1755-1315/221/1/012088
15. Сидоров Д.В., Потапчук М.И., Сидляр А.В., Курсакин Г.А. Оценка удароопасности при освоении глубоких горизонтов Николаевского месторождения. Записки Горного института. 2019;238:392–398. https://doi.org/10.31897/PMI.2019.4.392 Sidorov D.V., Potapchuk M.I., Sidlyar A.V., Kursakin G.A. Assessment of rock-burst hazard in deep layer mining at Nikolayevskoye Field. Journal of Mining Institute. 2019;238:392–398. (In Russ.) https://doi.org/10.31897/PMI.2019.4.392
16. Мороз Н.Е., Гендлер С.Г., Вьюников А.А. Газодинамические явления при проходке выработок во вмещающих породах кимберлитовой трубки «Интернациональная». Горная промышленность. 2023;(S1):96–102. https://doi.org/10.30686/1609-9192-2023-S1-96-102 Moroz N.E., Gendler S.G., Vyunikov A.A. Gas-dynamic phenomena in tunnel driving thought the host rocks of the “International” kimberlite pipe. Russian Mining Industry. 2023;(1 Suppl.):96–102. (In Russ.) https://doi.org/10.30686/1609-9192-2023-S1-96-102
17. Мороз Н.Е., Сидоров Д.В., Соннов М.А. Применение цифровых двойников для прогнозной оценки удароопасности надштрековых целиков. Горная промышленность. 2022;(3):93–98. https://doi.org/10.30686/1609-9192-2022-3-93-98 Moroz N.E., Sidorov D.V., Sonnov M.A. Application of digital twins to predict rock-bump hazard of drift pillars. Russian Mining Industry. 2022;(3):93–98. (In Russ.) https://doi.org/10.30686/1609-9192-2022-3-93-98
18. Мороз Н.Е., Сидоров Д.В., Соннов М.А. Комплексное геомеханическое моделирование разработки жильных месторождений блочного строения. Горная промышленность. 2023;(6):71–74. https://doi.org/10.30686/1609-9192-2023-6-71-74 Moroz N.E., Sidorov D.V., Sonnov M.A. Complex geomechanical modeling of mining vein deposits of block structure. Russian Mining Industry. 2023;(6):71–74. (In Russ.) https://doi.org/10.30686/1609-9192-2023-6-71-74