A variational method of slope stability assessment

DOI: https://doi.org/10.30686/1609-9192-2024-3S-06-13

Читать на русскоя языкеA.V. Zhabko1, 2
1 Ural Branch, VNIMI JSC, Ekaterinburg, Russian Federation
2 Ural State Mining University, Ekaterinburg, Russian Federation

Russian Mining Industry №3S / 2024 стр. 06-13

Abstract: The article discusses the variational method of assessing slope stability, which is based on the limit equilibrium method, but in contrast to the engineering techniques of stability assessment allows a mathematical justification (the variational calculus) of a single most dangerous slip surface in the rock mass, including the torsion angles and distribution of the interslice forces in its various sections. The main ideas and provisions of the proposed theory or concept, i.e. the variational method of slope stability calculation, are: 1) definition of the shape and position of the slip surface in the rock mass should be justified by strict mathematical (variational) methods, rather than by selection of the slip surface of a specified shape, for example, a circular slip surface; 2) calculation or assessment of stability, and more specifically, calculation of the shear and cohesion forces at various sections of the slip surface, depending on the geometry of the slip surface and the slope, as well as mechanical characteristics of the rocks and contact surfaces, is carried out using different composite functions (summarized force). The author demonstrates in the article that when applying engineering methods for calculating the stability of slopes for various types of their stability loss, in contrast to the variational method, their limiting (design) parameters are sharply overestimated. The author believes this to be the root cause of many accidents associated with the failure of slope structures. Application of the variational method of slope stability assessment allowed to establish new forms of slope stability loss and explain the abnormally steep slope angles of shear sites observed in practice.

Keywords: slope, stability calculation, limiting parameters of slopes, slip surface, weakening surface, angle of friction, toe landslide, sub-toe landslide

For citation: Zhabko A.V. A variational method of slope stability assessment. Russian Mining Industry. 2024;(3S):06–13. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3S-06-13


Article info

Received: 10.05.2024

Revised: 18.06.2024

Accepted: 25.06.2024


Information about the author

Andrey V. Zhabko – Dr. Sci. (Eng.), Associate Professor, Head of the Laboratory of Open Pit Wall Stability, Ural Branch, VNIMI JSC; Head of the Mine Surveying Department, Ural State Mining University, Ekaterinburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Бахаева С.П., Гурьев Д.В. Оценка устойчивости борта котлована под промышленную площадку шахты. Горный информационно-аналитический бюллетень. 2021;(1):32–42. https://doi.org/10.25018/0236-1493-2021-1-0-32-42 Bakhaeva S.P., Gur’ev D.V. Slope stability analysis of pit wall meant for mine infrastructure site. Mining Informational and Analytical Bulletin. 2021;(1):32–42. (In Russ.) https://doi.org/10.25018/0236-1493-2021-1-0-32-42

2. Кутепов Ю.И., Васильева А.Д. Инженерно-геологические условия внешнего отвалообразования на разрезах Кузбасса. Горный информационно-аналитический бюллетень. 2017;(10):122–131. https://doi.org/10.25018/0236-1493-2017-10-0-122-131 Kutepov Yu.I., Vasil’eva A.D. Geotechnical conditions of external dumping at open pit mines in Kuzbass. Mining Informational and Analytical Bulletin. 2017;(10):122–131. (In Russ.) https://doi.org/10.25018/0236-1493-2017-10-0-122-131

3. Шпаков П.С., Юнаков Ю.Л. Устойчивость отвалов на месторождении «Эльдорадо». Горный информационно-аналитический бюллетень. 2018;(6):69–79. https://doi.org/10.25018/0236-1493-2018-6-0-69-79 Shpakov P.S., Yunakov Yu.L. Dump stability at the Eldorado deposit. Mining Informational and Analytical Bulletin. 2018;(6):69– 79. (In Russ.) https://doi.org/10.25018/0236-1493-2018-6-0-69-79

4. Гальперин А.М., Кутепов Ю.И., Еремин Г.М. Методы определения параметров отвалов и технологии отвалообразования на склонах. М.: Горная книга; 2012. 104 с.

5. Kutepov Yu.I., Kutepova N.A., Kutepov Yu.Yi., Vasileva A.D., Mukhina A.S., Smirnov R.D. Engineering-geological and geoecological aspects of formation of dry dumps on hydrodumps. IOP Conference Series: Earth and Environmental Science. 2021;938:012007. https://doi.org/10.1088/1755-1315/938/1/012007

6. Karablin M., Gurev D., Prostov S. Automated stability analysis of soil slopes. E3S Web of Conferences. 2019;105:01015. https://doi.org/10.1051/e3sconf/201910501015

7. Rybin V.V., Konstantinov K.N., Nagovitsyn O.V. Structure of integrated stability monitoring in open pit mining using digital technologies. Journal of Mining Science. 2021;57(4):601–606. https://doi.org/10.1134/S1062739121040074

8. Rybin V.V., Konstantinov K.K., Kagan M.M., Panasenko I.G. The organizing principles of the integrated slope stability monitoring. In: 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, 18–24 August, 2020. Sofia; 2020, pp. 333–338. https://doi.org/110.5593/sgem2020/1.2/s03.043

9. Zhabko A., Volkomorova N., Zhabko N. Theoretical basis for calculation of the quarries sides for collapse. E3S Web of Conferences. 2020;177:01004. https://doi.org/10.1051/e3sconf/202017701004

10. Deng D.-P., Liang L., Zhao L.-H. Limit equilibrium method (LEM) of slope stability and calculation of comprehensive factor of safety with double strength-reduction technique. Journal of Mountain Science. 2017;14(11):2311–2324. https://doi.org/10.1007/s11629-017-4537-2

11. Tianwen Z., Qingxiang C., Liu H., Jisen S., Wei Z. 3D stability analysis method of concave slope based on the Bishop method. International Journal of Mining Science and Technology. 2017;27(2):365–370. https://doi.org/10.1016/j.ijmst.2017.01.020

12. Xie M., Wang Z., Liu X., Xu B. Three-dimensional critical slip surface locating and slope stability assessment for lava lobe of Unzen volcano. Journal of Rock Mechanics and Geotechnical Engineering. 2011;3(1):82–89. https://doi.org/10.3724/SP.J.1235.2011.00082

13. Read J., Stacey P. (eds). Guidelines for open pit slope design. CSIRO; 2009. 496 p. https://doi.org/10.1071/9780643101104

14. Abramson L.W., Lee T.S., Sharma S., Boyce G.M. Slope stability and stabilization methods. 2nd ed. New York: John Wiley & Sons; 2001. 736 p.

15. Hall D.E., Long M.T., Remboldt M.D. (eds). Slope Stability reference guide for national forests in the United States. Washington, DC: U.S. Department of Agriculture, U.S. Forest Service, Engineering Staff; 1994. 3 volumes, 1091 p. Available at: https://forest.moscowfsl.wsu.edu/cgi-bin/engr/library/searchpub.pl?pub=1994e (accessed: 06.06.2024).

16. Гольдштейн М.Н., Кушнер С.Г., Шевченко М.И. Расчеты осадок и прочности оснований зданий и сооружений. Киев: Будiвельник; 1977. 208 с.

17. Соловьев Ю.И. Устойчивость откосов из гипотетического грунта. В кн.: Никитенко Ф.А. (ред.) Вопросы инженерной геологии, оснований и фундаментов. Новосибирск: НИИЖТ; 1962. Вып. 28. С. 83–97.

18. Жабко А.В. Аналитическая геомеханика. Екатеринбург: Изд-во УГГУ; 2016. 224 с. Режим доступа: https://www.geokniga.org/bookfiles/geokniga-zhabkoavanaliticheskayageomehanika.pdf (дата обращения: 06.06.2024).

19. Жабко А.В. Новая концепция оценки устойчивости откосов. Горный информационно-аналитический бюллетень. 2022;(10):104–124. https://doi.org/10.25018/0236_1493_2022_10_0_104 Zhabko A.V. A new concept of slope stability design. Mining Informational and Analytical Bulletin. 2022;(10):104–124. (In Russ.) https://doi.org/10.25018/0236_1493_2022_10_0_104