Modeling the impact of surface mining operations on the condition of the underlying rock mass when planning underground mining operations using the CAE Fidesys software suite
I.V. Gladkov1, E.N. Yakunchikov1, A.E. Rumyantsev2, M.A. Sonnov3
1 SUEK JSC, Novosibirsk, Russian Federation
2 Gipronickel Institute, St. Petersburg, Russian Federation
3 Fidesis LLC, Moscow, Russian Federation
Russian Mining Industry №4 / 2024 p.165-172
Abstract: Application of numerical modeling of fast processes when solving the field-scale tasks remains an actual scientific and research problem. It is impossible to make observations of the effect on the rock mass located beneath the previously mined open-pit reserves. Two ways of studying are possible, i.e. physical and computer (numerical) modeling. Application of physical modeling requires availability of laboratory facilities and is concerned with significant financial costs thus being less preferable for studying the impact of processes that take place during blasting operations on the rock mass located at depth, but where underground mining operations are not yet underway and there is no possibility of direct measurement of the seismic signal from the blasting operations. Surface drilling with the installation of depth sensors also requires significant financial costs and its application is not always possible to foresee, as the activities may be separated in time by decades and underground mining was not previously planned. The cost of research with the use of numerical modeling is much cheaper and in addition to high qualification of the expert requires only the availability of software and a high-performance computer for the calculations. This paper provides an example of numerical modeling using the CAE Fidesys software suite to determine the effects of technological factors in open pit mining on the mining conditions of the Polysaevskiy seam reserves in conditions of the mine named after A.D. Ruban. A complex approach was used to create the model: from optimization of the blast hole geometry up to step-by-step calculation and analysis of the obtained results. A complex approach was used to create the model: from optimization of the blast hole geometry up to step-by-step calculation and analysis of the obtained results. This approach made it possible to obtain a qualitative and quantitative representation of the rock mass deformation distribution in the area of the Polysaevsky-2 seam as the result of previous surface drilling and blasting operations.
Keywords: coal, drilling and blasting operations, mining operations, rocks, analysis methods, seismic impact, numerical model, stress-and-strain state, deformations, seam, mining system
For citation: Gladkov I.V., Yakunchikov E.N., Rumyantsev A.E., Sonnov M.A. Modeling the impact of surface mining operations on the condition of the underlying rock mass when planning underground mining operations using the CAE Fidesys software suite. Russian Mining Industry. 2024;(4):165–172. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-165-172
Article info
Received: 07.06.2024
Revised: 09.07.2024
Accepted: 16.07.2024
Information about the authors
Ivan V. Gladkov – Engineer for planning of mining operations, SUEK JSC, Novosibirsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Evgeny N. Yakunchikov – Cand. Sci. (Eng.), Head of Technical Services Department for Underground Mining Operations, SUEK JSC, Novosibirsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexandr E. Rumyantsev – Cand. Sci. (Eng.), Chief Specialist, Laboratory of Geotechnical Engineering, Gipronickel Institute, St. Petersburg, Russian Federation; https://orcid.org/0000-0002-2204-961X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Maksim A. Sonnov – Full Member of the Academy of Mining Sciences, Deputy General Director for Sales, Fidesis LLC, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Садовский М.А. Избранные труды. Геофизика и физика взрыва. М.: Наука; 2004. 440 с. Режим доступа: https://www.geokniga.org/books/21916 (дата обращения: 21.05.2024).
2. Xu P., Yang R.-S., Guo Y., Chen C., Kang Y. Investigation of the effect of the blast waves on the opposite propagating crack. International Journal of Rock Mechanics and Mining Sciences. 2021;144:104818. https://doi.org/10.1016/j.ijrmms.2021.104818
3. Верхоланцев А.В., Шулаков Д.Ю., Дягелев Р.А. Особенности оценки сейсмического воздействия буровзрывных работ. Горный журнал. 2019;(5):29–35. https://doi.org/10.17580/gzh.2019.05.05 Verkholantsev A.V., Shulakov D.Yu., Dyagilev R.A. Features of assessing seismic effects of blasting operations. Gornyi Zhurnal. 2019;(5):29–35. (In Russ.) https://doi.org/10.17580/gzh.2019.05.05
4. Холодилов А.Н., Господариков А.П, Еременко А.А. Методические основы классификации взрывов по уровню их сейсмического действия. Горный журнал. 2021;(5):98–102. https://doi.org/10.17580/gzh.2021.05.13 Kholodilov A.N., Gospodarikov A.P., Eremenko A.A. Procedural framework for explosion classification by the seismic load criterion. Gornyi Zhurnal. 2021;(5):98–102. (In Russ.) https://doi.org/10.17580/gzh.2021.05.13
5. Hosseinzadeh Gharehgheshlagh H., Alipour A. Ground vibration due to blasting in dam and hydropower projects. Rudarsko-geološko-naftni zbornik (The Mining-Geology-Petroleum Engineering Bulletin). 2020;35(3):59–66, https://doi.org/10.17794/rgn.2020.3.6
6. Марысюк В.П., Сабянин Г.В., Трофимов А.В., Киркин А.П. Определение параметров скважинных зарядов ВВ при очистной отбойке на основе расчета зон разрушения и районирования руд по физико-механическим свойствам. Горный журнал. 2020;(1):58–62. https://doi.org/10.17580/gzh.2020.01.11 Marysyuk V.P., Sabyanin G.V., Trofimov A.V., Kirkin A.P. Designing blast patterns by calculation of fracture zones and ore zoning by physical and mechanical properties. Gornyi Zhurnal. 2020;(1):58–62. (In Russ.) https://doi.org/10.17580/gzh.2020.01.11
7. Камянский В.Н. Моделирование взрыва скважинных зарядов в среде Ansys. Проблемы недропользования. 2017;(1):119–126. https://doi.org/10.18454/2313-1586.2017.01.119 Kamyansky V.N. Borehole blasting simulation using Ansys software. Problems of Subsoil Use. 2017;(1):119–126. (In Russ.) https://doi.org/10.18454/2313-1586.2017.01.119
8. Камянский В.Н. Оценка сейсмовзрывных нагрузок на законтурный массив при разделке отрезной щели. Горный информационно-аналитический бюллетень. 2018;(7):181–188. https://doi.org/10.25018/0236-1493-2018-7-0-181-188 Kamyansky V.N. Estimation of seismic load of blasting on pit wall rock mass during blasted slot making. Mining Informational and Analytical Bulletin. 2018;(7):181–188. (In Russ.) https://doi.org/10.25018/0236-1493-2018-7-0-181-188
9. Мысин А.В., Ковалевский В.Н. Моделирование состояния сложноструктурного массива с учетом динамического нагружения. Горный журнал. 2024;(5):38–47. https://doi.org/10.17580/gzh.2024.05.03 Mysin A.V., Kovalevskiy V.N. Modeling behavior of complex-structured rock mass with regard to dynamic impact. Gornyi Zhurnal. 2024;(5):38–47. (In Russ.) https://doi.org/10.17580/gzh.2024.05.03
10. Pan C., Li X., Li J., Zhao J. Numerical investigation of blast-induced fractures in granite: insights from a hybrid LS-DYNA and UDEC grain-based discrete element method. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2021;7:49. https://doi.org/10.1007/s40948-021-00253-6
11. Toraño J., Rodríguez R., Diego I., Rivas J.M., Casal M.D. FEM models including randomness and its application to the blasting vibrations prediction. Computers and Geotechnics. 2006;33(1):15–28. https://doi.org/10.1016/j.compgeo.2006.01.003
12. Mysin A., Kovalevskiy V. Creation and Verification of Numerical Model of Explosive Charge Blast in The Ansys Software System, for the Purpose of Substantiating the Optimal Parameters of Drilling and Blasting Operations. E3S Web of Conferences. 2020;174:01046. https://doi.org/10.1051/e3sconf/202017401046
13. Onederra I.A., Furtney J.K., Sellers E., Iverson S. Modelling blast induced damage from a fully coupled explosive charge. International Journal of Rock Mechanics and Mining Sciences. 2013;58:73–84. https://doi.org/10.1016/j.ijrmms.2012.10.004
14. Bonet J., Wood R.D. Nonlinear Continuum Mechanics for Finite Element Analysis. 2nd ed. Cambridge: Cambridge University Press; 2008. 318 p. Available at: https://www.klancek.si/sites/default/files/datoteke/files/bonet-woodnonlinearcontinuummechanics2ndedition.pdf (accessed: 21.05.2024).