Analyzing the efficiency of implementing predictive maintenance of mining equipment based on Industry 4.0 technologies
K.V. Kharchenko, A.Zh. Zubets, E.I. Moskvitina, L.K. Babayan, A.M. Laffah
Financial University under the Government of the Russian Federation, Moscow, Russian Federation
Russian Mining Industry №4 / 2024 p.130-138
Abstract: The mining industry plays a key role in the global economy, providing raw materials to various industries. However, the operational efficiency of mining equipment remains a serious issue due to high maintenance costs and downtime caused by its failures. The relevance of the study is defined by the potential of using the Industry 4.0 technologies to improve the efficiency of mining equipment maintenance. The purpose of the work is to evaluate the efficiency of implementing predictive maintenance systems based on the Industry 4.0 technologies and to develop recommendations for their development in the industry. The methodology includes an analysis of the technology adoption level in 2013–2023, collection of the KPI data to assess the impact of predictive maintenance, studying the economic efficiency of investments, the development of models for predicting failures and optimizing maintenance strategies. The results showed a significant increase in the implementation level of the Industry 4.0 technologies, improved KPIs and high economic efficiency of investments in predictive maintenance systems. The developed models demonstrated high accuracy of failure prediction and optimization of the maintenance strategies. Recommendations are formulated for the efficient implementation of predictive maintenance systems with account for the specific features of the industry. The research has theoretical significance for the development of the predictive maintenance concept and practical value for the mining enterprises. Further research may be directed towards the development of the industry standards and the integration of predictive maintenance systems with other management processes.
Keywords: mining industry, predictive maintenance, Industry 4.0, operational efficiency, technical availability, machine learning, big data
For citation: Kharchenko K.V., Zubets A.Zh., Moskvitina E.I., Babayan L.K., Laffah A.M. Analyzing the efficiency of implementing predictive maintenance of mining equipment based on Industry 4.0 technologies. Russian Mining Industry. 2024;(4):130–138. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-130-138
Article info
Received: 23.05.2024
Revised: 04.07.2024
Accepted: 11.07.2024
Information about the authors
Konstantin V. Kharchenko – Cand. Sci. (Sociol.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Anton Zh. Zubets – Cand. Sci. (Econ.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Ekaterina I. Moskvitina – Cand. Sci. (Econ.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Levon K. Babayan – Assistant of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Adam M. Laffah – Assistant of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Carvalho T.P., Soares F.A.А.М.Т., Vita R., da Francisco R.P., Basto J.P., Alcalá S.G. A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering. 2019;137:106024. https://doi.org/10.1016/j.cie.2019.106024
2. Çınar Z.M., Abdussalam Nuhu, A., Zeeshan Q., Korhan O., Asmael M., Safaei B. Machine learning in predictive maintenance towards sustainable smart manufacturing: A review. Sustainability. 2020;12(19):8211. https://doi.org/10.3390/su12198211
3. Bousdekis A., Magoutas B., Apostolou D., Mentzas G. A proactive decision making framework for condition-based maintenance. Industrial Management & Data Systems. 2015;115(7):1225–1250. https://doi.org/10.1108/IMDS-03-2015-0071
4. Chitra S., Paramasivan B. Applications of machine learning techniques for predictive maintenance in mining industry – A review. Resources Policy. 2022;77:102681. https://doi.org/10.1016/j.resourpol.2022.102681
5. Khadse V., Mahalle P.N., Biraris S.V. An empirical comparison of supervised machine learning algorithms for internet of things data. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020. IEEE; 2020, pp. 477–482. https://doi.org/10.1109/ICICCS48265.2020.9120955
6. Sahal R., Alsamhi S.H., Breslin J.G., Brown K.N., Ali M.I. Digital twins collaboration for automatic erratic operational data detection in Industry 4.0. Applied Sciences. 2021;11(7):3186. https://doi.org/10.3390/app11073186
7. Krokoszinski P. Methodology for the improvement of machine classification based on predictive maintenance data using deep neural network mapping with multi-attribute data points. Energies. 2022;15(14):4883. https://doi.org/10.3390/en15144883
8. Rødseth H., Schjølberg P., Marhaug A. Deep digital maintenance. Advances in Manufacturing. 2017;5:299–310. https://doi.org/10.1007/s40436-017-0202-9
9. Bousdekis A., Papageorgiou N., Magoutas B., Apostolou D., Mentzas G. A real-time architecture for proactive decision making in manufacturing enterprises. In: Ciuciu I., et al. (eds) Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, EI2N, FBM, INBAST, ISDE, META4eS, and MSC 2015, Rhodes, Greece, October 26–30, 2015. Proceedings. Springer, Cham; 2015, pp. 137–146. https://doi.org/10.1007/978-3-319-26138-6_17
10. Ayvaz S., Alpay K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications. 2021;173:114598. https://doi.org/10.1016/j.eswa.2021.114598
11. Borgi T., Hidri A., Neef B., Naceur M.S. Data analytics for predictive maintenance of industrial robots. In: 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 14–17 January 2017. IEEE. 2017, pp. 412–417. https://doi.org/10.1109/ASET.2017.7983729
12. Lee W.J., Wu H., Yun H., Kim H., Jun M.B.G., Sutherland J.W. Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP. 2019;80:506–511. https://doi.org/10.1016/j.procir.2018.12.019
13. Панфилова О.Р., Великанов В.С., Усов И.Г., Мацко Е.Ю., Кутлубаев И.М. Расчет ресурса деталей структурно-функциональных элементов горных машин. Физико-технические проблемы разработки полезных ископаемых. 2018;(2):43– 51. https://doi.org/10.15372/FTPRPI20180206 Panfilova O.P., Velikanov V.S., Usov I.G., Matsko E.Y., Kutlubaev I.M. Calculation of life of functional parts in the structure of mining machines. Journal of Mining Science. 2018;54(2):218–225. https://doi.org/10.1134/S1062739118023570
14. Великанов В.С., Панфилова О.Р., Усов И.Г. Анализ показателей долговечности рукояти карьерного экскаватора. Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2018;16(4):13–20. Режим доступа: http://www.vestnik.magtu.ru/arkhiv-nomerov/73-arkhiv-nomerov/4-2018/951-13.html (дата обращения: 26.05.2024). Velikanov V.S., Panfilova O.R., Usov I.G. Analysis of the dipper handle durability indicators. Vestnik of Nosov Magnitogorsk State Technical University. 2018;16(4):13–20. (In Russ.) Available at: http://www.vestnik.magtu.ru/arkhiv-nomerov/73-arkhiv-nomerov/4-2018/951-13.html (accessed: 26.05.2024).
15. Панфилова О.Р., Великанов В.С., Усов И.Г., Кутлубаев И.М. Надежность механических систем горных и транспортных машин. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова; 2020. 60 с.
16. Великанов В.С., Бочинская А.Н. Формирование системы минимизации рисков отказов карьерных экскаваторов при управлении. В кн.: Актуальные проблемы современной науки, техники и образования: тезисы докладов 77-й Междунар. науч.-техн. конф., г. Магнитогорск, 22–26 апр. 2019 г. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова; 2019. С. 36.
17. Дьяконов Н.А., Логунова О.С. Системы управления технологическим процессом на основе предиктивной аналитики: проектирование. Электротехнические системы и комплексы. 2021;(1):58–64. https://doi.org/10.18503/2311-8318-2021-1(50)-58-64 Dyakonov N.A., Logunova O.S. Process control systems based on predictive analytics: Design. Electrotechnical Systems and Complexes. 2021;(1):58–64. (In Russ.) https://doi.org/10.18503/2311-8318-2021-1(50)-58-64
18. Тимофеев А., Волков М., Могучев М., Щетинин С. Цифровое будущее горнорудного предприятия. В кн.: BCG Review, сентябрь 2020, pp. 9–25. Режим доступа: https://media-publications.bcg.com/BCG-Review-September-2020.pdf (дата обращения: 26.05.2024).