Specific features of mining out the penthouse between the open pit floor and the underground mining zone at the International mine
I.I. Aynbinder , O.V. Ovcharenko, P.G. Patskevich
Mining Institute of the Kola Scientific Center of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №5 / 2024 p.52-58
Abstract: The stress-strain state of the rock mass at the International mine has been assessed for mining the reserves of its upper levels. Options of the mining system that is most suitable for these conditions have been considered, i.e. a slicing method with consolidating stowing of the mined-out space and the room-and-pillar order of mining within a layer and the ascending order of layer excavation, as well as a system with induced sublevel caving of the ore and the host rocks. Mathematical modeling of changes in the stress-and-strain state of the rock mass have been performed for the selected mining method at different mining stages. It is shown that the stresses arising in the ore mass within the zone of mining operations will not lead to loss of strength and destruction of the structural elements of the mining system, and therefore, the proposed mining options will allow to excavate the reserves of the penthouse with a minimal loss of valuable raw materials while ensuring safe conditions of mining operations at the International mine.
Ключевые слова: penthouse, safe parameters, stress-and-strain state of the rock mass, kimberlite pipes, physical and mechanical properties of rocks, deposit development
Для цитирования: Aynbinder I.I., Ovcharenko O.V., Patskevich P.G. Specific features of mining out the penthouse between the open pit floor and the underground mining zone at the International mine. Russian Mining Industry. 2024;(5):52–58. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5-52-58
Article info
Received: 21.08.2024
Revised: 19.09.2024
Accepted: 20.09.2024
Information about the authors
Igor I. Aynbinder – Dr. Sci. (Eng.), Professor, Chief Research Associate, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0000-0003-1053-1166; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Oksana V. Ovcharenko – Cand. Sci. (Eng.), Senior Research Associate, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0000-0002-8589-655X
Petr G. Patskevich – Cand. Sci. (Eng.), Head of Laboratory, Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation
References
1. Каплунов Д.Р., Калмыков В.Н., Рыльникова М.В. Комбинированная геотехнология. М.: Руда и металлы; 2003. 560 с.
2. Анисимов К.А., Никифоров А.В. Современные технологии отработки алмазоносных месторождений. Известия Томского политехнического института. 2023;334(1):196–208. https://doi.org/10.18799/24131830/2023/1/3837 Anisimov K.A., Nikiforov A.V. Modern technologies of the development of diamondiferous deposits. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2023;334(1):196–208. (In Russ.) https://doi.org/10.18799/24131830/2023/1/3837
3. Акишев А.Н., Герасимов Е.Н., Зырянов И.В., Коровенков А.А., Кульминский А.С., Лобанов В.В. О возобновлении добычных работ на месторождении трубки «Мир». В кн.: Всероссийская конференция по проблемам восстановления отработки алмазоносного месторождения трубки «Мир» после аварии: сб. ст. M.: Изд. МГТУ им. Н.Э. Баумана; 2018. С. 5–15.
4. Казикаев Д.М., Козырев А.А., Каспарьян Э.В., Иофис М.А. Управление геомеханическими процессами при разработке месторождений полезных ископаемых. М.: Горная книга; 2016. 490 с.
5. Григорьев В.В., Сараскин А.В., Орлов М.П., Исаев В.Ю. Опыт разработки Учалинского месторождения медно-колчеданных руд. Горный журнал. 2004;(6):41–45. Режим доступа: https://www.rudmet.ru/journal/1093/article/18054/ (дата обращения: 13.05.2024). Grigor'ev V.V., Saraskin A.V., Orlov M.P., Isaev V.Yu. Experience of developing the Uchaly copper-sulphide ore deposit. Gornyi Zhurnal. 2004;(6):41–45. (In Russ.) Available at: https://www.rudmet.ru/journal/1093/article/18054/ (accessed: 13.05.2024).
6. Зубов В.П., Анисимов К.А. Ресурсосберегающая технология подземной отработки запасов алмазосодержащих кимберлитовых рудных тел ниже дна карьера под защитной подушкой. Горный журнал. 2023;(4):26–37. https://doi.org/10.17580/gzh.2023.04.05 Zubov V.P., Anisimov K.A. Resource-saving underground mining technology for diamond-bearing kimberlite ore under protective cushion below open pit mine bottom. Gornyi Zhurnal. 2023;(4):26–37. (In Russ.) https://doi.org/10.17580/gzh.2023.04.05
7. Owen K.C., Guest A.R. Underground mining of kimberlite pipe. In: Glen H.W., Afr S. (eds) Proceedings XVth CMMI Congress, Johannesburg. Inst. Min. Metall.; 1994, vol. 1, pp. 207–218.
8. Кузьмин Е.В., Узбекова А.Р. Технологии с самообрушением. Развитие и новые возможности. Горная промышленность. 2005;(3):36–39. Kuzmin E.V., Uzbekova A.R. Block caving mining methods. Evolution and new opportunities. Russian Mining Industry. 2005;(3):36–39. (In Russ.)
9. Галлагер Р. Метод конечных элементов. Основы. М.: Мир; 1984. 428 с.
10. Zienkiewicz O.C., Taylor R.L., Fox D.D. The Finite Element Method for Solid and Structural Mechanics. Oxford: Butterworth – Heinemann; 2013. 672 p.