Flow of a viscous dispersing gas-air mixture due to a sudden release of gas into the mine atmosphere

DOI: https://doi.org/10.30686/1609-9192-2024-5-154-159

Читать на русскоя языкеS.V. Cherdantsev, P.A. Shlapakov, E.A. Shlapakov, K.S. Lebedev, V.V. Kolykhalov
JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry, Kemerovo, Russian Federation

Russian Mining Industry №5 / 2024 p.154-159

Abstract: Mining of coal deposits leads to forming outburst-prone areas, which are prone to sudden emissions of coal, rock and gas into mine workings. These sudden outbursts can result in severe accidents that are often fatal. As a rule, outbursts occur at high speeds, sometimes exceeding the speed of sound. From the point of view of gas dynamics, a gas outburst is a disturbance that creates a shock wave in the quasi-stationary mine atmosphere, the intensity of which depends on the velocity of the outburst gas. The shock wave is capable of injuring miners, destroying the mine support and ruin mechanisms and technological equipment located in the vicinity of the outburst. In this regard, the problems of the gas-air mixture flow caused by a sudden outburst seem to be highly relevant, both from the scientific and practical point of view. This article considers the problem of the gas–air mixture flows with viscous and dispersive properties, described by the Korteweg–de Vries–Burgers partial differential equation, which closed-form solution is presented in the paper. Computational procedures were used as the basis to build the graphs that characterize the flow conditions of the gas-air mixtures at various parameters of their viscosity and dispersion. The graphs were analyzed and a number of patterns were revealed in the flow of the gas-air mixtures.

Keywords: mine workings, sudden outbursts of coal and gas, wave number, dispersion function, oscillation phase, group velocity, viscosity of gas–air mixtures, Korteweg–de Vries–Burgers equation

For citation: Cherdantsev S.V., Shlapakov P.A., Shlapakov E.A., Lebedev K.S., Kolykhalov V.V. Flow of a viscous dispersing gas-air mixture due to a sudden release of gas into the mine atmosphere. Russian Mining Industry. 2024;(5):154–159. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5-154-159


Article info

Received: 15.07.2024

Revised: 27.08.2024

Accepted: 10.09.2024


Information about the authors

Sergei V. Cherdantsev – Dr. Sci. (Eng.), Leading Researcher, JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry (JSC "NC VOSTNII), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pavel A. Shlapakov – Can. Sci. (Eng.), Laboratory Head, JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry (JSC NC VOSTNII), Kemerovo, Russian Federation; е–mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Evgeniy A. Shlapakov – Senior Researcher, JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry (JSC NC VOSTNII), Kemerovo, Russian Federation; е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kirill S. Lebedev – Senior Researcher, JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry (JSC NC VOSTNII), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Victor V. Kolykhalov – Senior Researcher, JSC Scientific centre VOSTNII on industrial and ecological safety in mountain industry (JSC NC VOSTNII), Kemerovo, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Христианович С.А. О волне выброса. Известия АН СССР. 1953;(12):1679–1688. Khristianovich S.A. On the emission wave. Izvestiya of the USSR Academy of Sciences. 1953;(12):1679–1688. (In Russ.)

2. Ходот В.В. Внезапные выбросы угля и газа. М.: Госгортехиздат; 1961. 363 с.

3. Трофимов В.А. Внезапный выброс угля и газа. Вынос угля и газа в выработанное пространство. Горный информационно-аналитический бюллетень. 2011;(S1):391‒405. Trofimov V.A. Sudden release of coal and gas. Removal of coal and gas into the developed space. Mining Informational and Analytical Bulletin. 2011;(S1):391‒405. (In Russ.)

4. Черданцев Н.В. Об одном подходе к построению решения задачи о выбросе угля и метана из краевой части пласта. Прикладная математика и механика. 2023;87(1):81–111. https://doi.org/10.31857/S0032823523010058 Cherdantsev N.V. About one approach to the construction of a solution to the problem of coal and methane emissions from the marginal zone of the formation. Prikladnaya Matematika i Mekhanika. 2023;87(1):81–111. (In Russ.) https://doi.org/10.31857/S0032823523010058

5. Черданцев Н.В., Черданцев С.В., Ли Х.У., Филатов Ю.М., Шлапаков П.А., Лебедев К.С. Об одном подходе к описанию суфлярных выделений газа из резервуаров угольного массива в горные выработки. Безопасность труда в промышленности. 2017;(3):45–52. Cherdantsev N.V., Cherdantsev S.V., Lee H.U., Filatov Y.M., Shlapakov P.A., Lebedev K.S. On one approach to the description of souffle gas emissions from coal reservoirs into mine workings. Occupational Safety in Industry. 2017;(3):45–52. (In Russ.)

6. Голубятников А.Н., Украинский Д.В. О точных аналитических решениях уравнений газовой динамики. Известия Российской академии наук. Механика жидкости и газа. 2020;(3):141‒150. https://doi.org/10.31857/S0568528120030044 Golubyatnikov A.N., Ukrainskii D.V. On exact analytical solutions of gas dynamic equations. Fluid Dynamics. 2020;55(3):423– 432. https://doi.org/10.1134/S0015462820030040

7. Голубкина И.В., Осипцов А.Н. Волны уплотнения с частичной и полной дисперсией в газокапельной среде с фазовыми переходами. Известия Российской академии наук. Механика жидкости и газа. 2022;(3):44‒55. Golubkina I.V., Osiptsov A.N. Partly and fully dispersed compression waves in a gas-droplet mixture with phase transitions. Fluid Dynamics. 2022;57(3):261–272. https://doi.org/10.1134/S0015462822030065

8. Булатов В.В., Владимиров И.Ю. Внутренние гравитационные волны от осциллирующего источника возмущений в стратифицированной среде с двухмерными сдвиговыми течениями. Известия Российской академии наук. Механика жидкости и газа. 2022;(4):60‒68. https://doi.org/10.31857/S0568528122040016 Bulatov V.V., Vladimirov I.Yu. Internal gravity waves generated by an oscillating disturbance source in a stratified medium in the presence of two-dimensional shear flows. Fluid Dynamics. 2022;57(4):477–485. https://doi.org/10.1134/s0015462822040012

9. Голубев А.Ю., Потокин Г.А. Пульсации давления на поверхности трехмерных обтекаемых выступающих тел. Известия Российской академии наук. Механика жидкости и газа. 2020;(1):57–63. https://doi.org/10.31857/S0568528120010065 Golubev A.Yu., Potokin G.A. Pressure fluctuations on the surfaces of three-dimensional protruding bodies in a gas flow. Fluid Dynamics. 2020;55(1):55–61. https://doi.org/10.1134/S0015462820010061

10. Sizykh G.B. Integral invariant of ideal gas flows behind a detached bow shock. Fluid Dynamics. 2021;56(8):1027–1030. https://doi.org/10.1134/S0015462821080097

11. Шевелев Ю.Д. Примеры установившихся осесимметричных течений идеальной несжимаемой жидкости. Известия Российской академии наук. Механика жидкости и газа. 2022;(2):3–13. https://doi.org/10.31857/S0568528122020074 Shevelev Yu.D. Examples of steady axisymmetric flows of an ideal incompressible fluid. Fluid Dynamics. 2022;57(2):111– 121. https://doi.org/10.1134/S0015462822020070

12. Gubaidullin D.A., Tukmakov D.A. Numerical study of the effect of polydispersity on the mass transfer of the dispersed phase during the passage of a shock wave through a gas suspension. Fluid Dynamics. 2023;58(7):1373–1383. https://doi.org/10.1134/S0015462823601997

13. Островский Л.А., Потапов А.И. Введение в теорию модулированных волн. М.: Физматлит; 2003. 400 с.

14. Черданцев С.В., Шлапаков П.А., Голоскоков С.И., Ерастов А.Ю., Лебедев К.С., Шлапаков Е.А. О формировании напряженного состояния в шахтной перемычке при прохождении через нее ударной волны. Вестник Научного центра ВостНИИ по промышленной и экологической безопасности. 2023;(1):47–62. https://doi.org/10.25558/VOSTNII.2023.40.18.005 Cherdantsev S.V., Shlapakov P.A., Goloskokov S.I., Erastov A.Yu., Lebedev K.S., Shlapakov E.A. On formation of stress state in shaft bridge when shock wave passes through it. Bulletin of Scientific Centre VostNII for Industrial and Environmental Safety. 2023;(1):47–62. (In Russ.) https://doi.org/10.25558/VOSTNII.2023.40.18.005

15. Черданцев С.В., Шлапаков П.А., Ерастов А.Ю., Лебедев К.С. Напряженное состояние в шахтной перемычке, обусловленное давлением на фронте ударной волны. Безопасность труда в промышленности. 2023;(2):7–14. https://doi.org/10.24000/0409-2961-2023-2-7-14 Cherdantsev S.V., Shlapakov P.A., Erastov A.Yu., Lebedev K.S. Stress state in a shaft jumper due to pressure at the shock wave front. Occupational Safety in Industry. 2023;(2):7–14. (In Russ.) https://doi.org/10.24000/0409-2961-2023-2-7-14

16. Карпман В.И. Нелинейные волны в диспергирующих средах. М.: Наука; 1973. 176 с.

17. Уизем Дж. Линейные и нелинейные волны. М.: Мир; 1977. 622 с.

18. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука; 1974. 331 с.

19. стон Т., Стюарт И. Теория катастроф и ее приложения. М.: Физматлит; 1980. 608 с.