Contemporary aspects of designing mining transport machines in the context of digital transformation of mining operations

DOI: https://doi.org/10.30686/1609-9192-2024-5S-28-32

Читать на русскоя языкеV.S. Velikanov1, 2, I.A. Grishin3, Z.S. Akmanova3, O.A. Lukashuk1, A.D. Lukashuk1
1 Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
2 Ural State Mining University, Ekaterinburg, Russian Federation
3 Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation

Russian Mining Industry №5S / 2024 p.28-32

Abstract:

Relevance of research. The efficiency of mining and mineral processing is determined by the correct selection strategy for equipment and technology in the production process. Modern trends in the development of machinery, equipment and technological systems are manifested in the increasing complexity of the mechanical design and multifunctionality of mining equipment. For this reason, the focus of new designs is shifting to a more detailed study of the product performance during the development stages prior to full-scale testing, primarily to reduce the time and cost of product development and increase the chances for the machine to reach the market. This provides additional opportunities to improve the design and manufacturing of mining equipment by creating and utilising feedback while extensively applying testing and diagnostic procedures.

Methods. A complex approach that included a system scientific analysis and generalization of previously published studies was used in addressing the tasks set.

Results. Modelling and calculation of the operator's cabin for a mining excavator has been performed in the COMPAS-3D software application of the APM FEM System. 'The calculation core of the APM FEM System for the COMPAS-3D is the “Finite Element Software System APM Structure3D” software tool.

Practical value. This approach can be implemented in the development of promising designs of operator cabins for mining transport machines.

Keywords: digitalisation, digital twin, life cycle costing, mining machines, finite element software system

Acknowledgments: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project FRZU-2023-0008).

For citation: Velikanov V.S., Grishin I.A., Akmanova Z.S., Lukashuk O.A., Lukashuk A.D. Contemporary aspects of designing mining transport machines in the context of digital transformation of mining operations. Russian Mining Industry. 2024;(5S): 28–32. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-28-32


Article info

Received: 19.08.2024

Revised: 16.10.2024

Accepted: 17.10.2024


Information about the authors

Vladimir S. Velikanov – Dr. Sci. (Eng.), Professor, Department of Hoisting and Hauling Machines and Robots, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation; Professor, Department of Automatics and Computer Technologies, Ural State Mining University, Ekaterinburg, Russian Federation; https://orcid.org/0000-0001-5581-2733; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Igor A. Grishin – Cand. Sci. (Eng.), Head of the Department of Geology, Mine Surveying and Mineral Processing, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation; https://orcid.org/0000-0001-8010-7542; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Zoya S. Akmanova – Cand. Sci. (Educ.), Associate Professor, Department of Applied Mathematics and Informatics, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Olga A. Lukashuk – Cand. Sci. (Eng.), Head of the Department of Hoisting and Hauling Machines and Robots, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation; https://orcid.org/0000-0002-4952-0344; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Alena D. Lukashuk – Master student, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Княгин В.Н. Цифровая трансформация: бизнес-модели и рыночные игроки. М.: Сколково; 2019.

2. Velikanov V.S., Dyorina N.V., Korotkova A.N., Dyorina K.S. The challenges of Industry 4.0 and the need for new answers in the mining industry. News of the Ural State Mining University. 2021;(2):154–166. https://doi.org/10.21440/2307-2091-2021-2-154-166

3. Великанов В.С., Дремин А.В., Лукашук О.А., Чернухин С.А., Лукашук М.Д. Цифровая трансформация горнодобывающих предприятий и теротехнология наземных транспортных средств. Горное оборудование и электромеханика. 2024;(1):50–56. https://doi.org/10.26730/1816-4528-2024-1-50-56 Velikanov V.S., Dremin A.V., Lukashuk O.A., Chernuhin S.A., Lukashuk M.D. Digital transformation mining enterprises and terotechnology ground vehicles. Mining Equipment and Electromechanics. 2024;(1):50–56. (In Russ.) https://doi.org/10.26730/1816-4528-2024-1-50-56

4. Блинов В.Л., Богданец С.В. Цифровые двойники турбомашин. Екатеринбург: Изд-во Урал. ун-та; 2022. 162 с. Режим доступа: https://elar.urfu.ru/handle/10995/117116 (дата обращения: 11.08.2024).

5. Великанов В.С., Ильина Е.А., Кочержинская Ю.В. Визуализация и анализ информации на основе компьютерного моделирования испытаний кабины карьерного гусеничного экскаватора на соответствие требованиям безопасности. Современные технологии. Системный анализ. Моделирование. 2022;(3):196–206. Режим доступа: https://ojs.irgups.ru/index.php/stsam/article/view/804 (дата обращения: 11.08.2024). Velikanov V.S., Il’ina E.A., Kocherzhinskaya Yu.V. Visualization and analysis of information based on computer simulation of the quarry tracked excavator cabin tests for the compliance with safety requirements. Modern Technologies. System Analysis. Modeling. 2022;(3):196–206. (In Russ.) Available at: https://ojs.irgups.ru/index.php/stsam/article/view/804 (accessed: 11.08.2024).

6. Журавлев А.В. Разработка математической модели несущей системы кабины с использованием современных систем инженерного анализа. Международный научный журнал. 2012;(1):100–103. Zhuravlev A.V. Developing mathematical model of cab supporting system applying modern systems of engineering analysis. International Scientific Journal. 2012;(1):100–103. (In Russ.)

7. Журавлёв А.В., Козловская М.А. Результаты экспериментальных исследований несущего каркаса кабины опытного образца малогабаритного транспортного средства. Международный технико-экономический журнал. 2011;(2):128– 133. Zhuravlev A.V., Kozlovskaya M.A. Results of experimental research of load-bearing cabin frame of motor vehicle preproduction model. International Technical and Economic Journal. 2011;(2):128–133. (In Russ.)

8. Зузов В.Н., Шабан Б. Совершенствование кабин грузовых автомобилей на стадии проектирования для удовлетворения требованиям пассивной безопасности (при ударе спереди). Инженерный журнал: наука и инновации. 2013;(12):33. https://doi.org/10.18698/2308-6033-2013-12-1130 Zuzov V.N., Shaban B. Improving of construction cabs truck at the designing stage to satisfy passive safety requirements at frontal impact. Engineering Journal: Science and Innovation. 2013;(12):33. (In Russ.) https://doi.org/10.18698/2308-6033-2013-12-1130

9. Красюков Н.Ф., Оганьян Э.С., Ноздрачева В.А. Моделирование нагруженности конструкции кабины машиниста при столкновении локомотива с препятствием. Тяжелое машиностроение. 2006;(8):34–35. Krasyukov N.F., Ogan'yan E.S., Nozdracheva V.A. Modelling of the stresses in the operator cab structure in case of the hauling engine's collision with an obstacle. Tyazheloye Mashinostroyeniye. 2006;(8):34–35. (In Russ.)

10. Махутов Н.А., Гапанович В.А., Коссов В.С., Оганьян Э.С., Красюков Н.Ф., Волохов Г.М. Методы определения ресурса и циклической прочности конструкций экипажной части локомотивов. Транспорт: наука, техника, управление. 2016;(10):3–12. Makhutov N.A., Gapanovich V.A., Kossov V.S., Oganyan E.S., Krasyukov N.F., Volokhov G.M. Methods of determination of life and cyclic strength of locomotive underframe structures. Transport: Science, Equipment, Management. 2016;(10):3–12. (In Russ.)

11. Дзоценидзе Т.Д., Козловская М.А., Загарин Д.А. Новый технический облик автомобилей и тракторов как способ преодоления кризисных явлений в отечественном машиностроении. Автомобильная промышленность. 2020;(10):13–18. Dzotsenidze T.D., Kozlovskaja M.A., Zagarin D.A. The new technical content of automobiles and tractors as a way to overcome the crisis in domestic engineering. Avtomobilnaya Promyshlennost. 2020;(10):13–18. (In Russ.)

12. Дзоценидзе Т.Д., Ульянов О.В., Козловская М.А., Ильин В.М. Результаты испытаний гусеничного трактора ВТ-155Д с новой верхней надстройкой. Тракторы и сельхозмашины. 2011;(12):7–9. https://doi.org/10.17816/0321-4443-69232 Dzotsenidze T.D., Ulyanov O.V., Kozlovskaya M.A., Ilyin V.M. Test results of ВТ-155д caterpillar tractor with a new superstructure. Tractors and Agricultural Machinery. 2011;78(12):7–9. (In Russ.) https://doi.org/10.17816/0321-4443-69232

13. Шмелев А.В., Лисовский Э.В., Короткий В.С. Основы методики виртуального моделирования испытаний кабин грузовых автомобилей по требованиям пассивной безопасности. Механика машин, механизмов и материалов. 2015;(3):64–72. Режим доступа: https://mmmm.by/ru/readers/archive-room?layout=edit&id=624 (дата обращения: 11.08.2024). Shmelev A.V., Lisovski E.V., Korotki V.S. Basics of the computer simulation procedure for commercial vehicle cab passive safety testing. Mechanics of Machines, Mechanisms and Materials. 2015;(3):64–72. (In Russ.) Available at: https://mmmm.by/ru/readers/archive-room?layout=edit&id=624 (accessed: 11.08.2024).

14. Dzotsenidze T.D., Zagarin D.A., Kozlovskaya M.A. Use of profiled tubes to create three-dimensional frame-and-panel systems for tractors and automobiles. Metallurgist. 2014;58(7-8):717–723. https://doi.org/10.1007/s11015-014-9983-2

15. Mirzaamiri R., Esfahanian M., Ziaei-Rad S. Crash test simulation and structure improvement of IKCO 2624 truck according to ECE-R29 regulation. International Journal of Automotive Engineering. 2012;2(3):180–192. Available at: https://ziaeirad.iut.ac.ir/crash-test-simulation-and-structure-improvement-ikco-2624-truck-according-ece-r29-regulation (accessed: 11.08.2024).