Development of approaches to calculation of the stress-strain state parameters of the rock mass based on the results of deformation measurements at the borehole bottom

DOI: https://doi.org/10.30686/1609-9192-2024-5S-122-129

Читать на русскоя языкеI.E. Semenova1, P.V. Amosov2, N.N. Kuznetcov1, V.A. Nekrasov1
1 Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
2 Institute of North Industrial Ecology Problems Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation

Russian Mining Industry №5 / 2024 p.122-129

Abstract: To ensure safe conditions for mining of mineral deposits, information on the stress-strain state of the rock masses is necessary. There are a few methods to obtain this type of information. One of them, which has found wide application at mining enterprises, consists in using the characteristic of elastic restoration of the shape and dimensions of the rock mass element when its connection with the main mass is forcedly broken (the doorstopper method). For its correct realization, a mathematical tool is required that allows the transition from stresses at the borehole bottom to stresses in the rock mass without the use of empirical coefficients. The paper presents the results of developing a mathematical tool to calculate the stresses acting inside the rock mass and determined based on the doorstopper method. The possibility of using empirical coefficients (the concentration coefficient and the axial stress influence coefficient) obtained during long-term in-situ and laboratory studies for the transition from stresses at the borehole bottom (flat stress state) to stresses inside the rock mass (volumetric stress state) is shown. An approach for calculating the components of the stress tensor in the bottomhole plane of three mutually perpendicular boreholes through the deformation values of a four-sensor socket is proposed. The approach for transition from the directions and magnitudes of stresses on the measurement plane to the direction and magnitude of the main stresses inside the rock mass is given.

Keywords: stress-strain state, stress measurement, stress tensor, doorstopper method, theory of elasticity, rock mass, borehole

For citation: Semenova I.E., Amosov P.V., Kuznetcov N.N., Nekrasov V.A. Development of approaches to calculation of the stressstrain state parameters of the rock mass based on the results of deformation measurements at the borehole bottom. Russian Mining Industry. 2024;(5S):122–129. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-122-129


Article info

Received: 10.08.2024

Revised: 02.10.2024

Accepted: 11.10.2024


Information about the authors

Inna E. Semenova – Cand. Sci. (Eng.), Head of Department of Rock Mechanics, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Pavel V. Amosov – Cand. Sci. (Eng.), Leading researcher of the Laboratory of Interdisciplinary Ecological and Economic Research, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Nikolai N. Kuznetcov – Cand. Sci. (Eng.), Head of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Department of Rock Mechanics, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Valerii A. Nekrasov – Leading Engineer of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Department of Rock Mechanics, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Козырев А.А., Панин В.И., Семенова И.Э., Рыбин В.В. Геомеханическое обеспечение горных работ на горнодобывающих предприятиях Мурманской области. Горный журнал. 2019;(6):45–50. https://doi.org/10.17580/gzh.2019.06.05 Kozyrev A.A., Panin V.I., Semenova I.E., Rybin V.V. Geomechanical support of mining operations in mines of the Murmansk Region. Gornyi Zhurnal. 2019;(6):45–50. (In Russ.) https://doi.org/10.17580/gzh.2019.06.05

2. Maleki H., Lawson H. Analysis of geomechanical factors affecting rock bursts in sedimentary rock formations. Procedia Engineering. 2017;191:82–88.

3. Еременко А.А., Шапошник Ю.Н., Филиппов В.Н., Конурин А.И. Развитие научных основ безопасной и эффективной геотехнологии при освоении удароопасных месторождений Западной Сибири и Крайнего Севера. Горный журнал. 2019;(10):33–39. https://doi.org/10.17580/gzh.2019.10.03 Eremenko A.A., Shaposhnik Yu.N., Filippov V.N., Konurin A.I. Development of scientific framework for safe and efficient geotechnology for rockburst-hazardous mineral deposits in Western Siberia and the Far North. Gornyi Zhurnal. 2019;(10): 33–39. (In Russ.) https://doi.org/10.17580/gzh.2019.10.03

4. Турчанинов И.А. Сравнительные испытания прецизионной тензометрической шахтной аппаратуры. Уникальные приборы. 1972;(10):127–128. Turchaninov I.A. Comparative testing of precision strain gauge mine instrumentation. Unikalnye Pribory. 1972;(10):127–128. (In Russ.)

5. Herget G. Rock stress and rock stress monitoring in Canada. In: Hudson J.A. (ed.). Rock Testing and Site Characterization: Principles, Practice and Projects. Elsevier Ltd.; 1995, pp. 473–496. https://doi.org/10.1016/B978-0-08-042066-0.50026-4

6. Subrahmanyam D.S. Evaluation of hydraulic fracturing and overcoring methods to determine and compare the in situ stress parameters in porous rock mass. Geotechnical and Geological Engineering. 2019;37(6):4777–4787. https://doi.org/10.1007/s10706-019-00937-7

7. Hubbert M.K., Willis D.G. Mechanics of hydraulic fracturing. Transactions of the AIME. 1957;210(01):153–168. https://doi.org/10.2118/686-g

8. Курленя М.В. Развитие метода гидроразрыва для исследования напряженного состояния массива горных пород. Физико-технические проблемы разработки полезных ископаемых. 1994;(1):3–20. Kurlenya M.V., Leont’ev A.V., Popov S.N. Development of hydraulic fracturing for studying the stressed state of a rock mass. Journal of Mining Science. 1994;30(1):1–15. https://doi.org/10.1007/BF02048767

9. Леонтьев А.В., Рубцова Е.В., Леконцев Ю.М., Качальский В.Г. Измерительно-вычислительный комплекс «Гидроразрыв». Физико-технические проблемы разработки полезных ископаемых. 2010;(1):104–110. Leont’ev A.V., Rubtsova E.V., Lekontsev Yu.M., Kachal’sky V.G. Measuring-computing complex “Gidrorazryv”. Journal of Mining Science. 2010;46(1):89–94. https://doi.org/10.1007/s10913-010-0013-x

10. Leeman Е.R. The CSIR “doorstopper” and triaxial rock stress measuring instruments. Rock Mechanics. 1971;3(1):25–50. https://doi.org/10.1007/BF01243550

11. Borsetto M., Martinetti S., Ribacchi R. Interpretation of in situ stress measurements in anisotropic rocks with the doorstopper method. Rock Mechanics and Rock Engineering. 1984;17(3):167–182. https://doi.org/10.1007/BF01042548

12. Ljunggren C., Chang Y., Janson T., Christiansson R. An overview of rock stress measurement methods. International Journal of Rock Mechanics and Mining Sciences. 2003;40(7-8):975–989. https://doi.org/10.1016/j.ijrmms.2003.07.003

13. Siren T., Hakala M., Perras M.A.Reliable in situ rock stress measurement from the excavation surface. In: Hudyma M., Potvin Y. (eds). UMT 2017: Proceedings of the First International Conference on Underground Mining Technology. Australian Centre for Geomechanics, Perth; 2017, pp. 477–486. https://doi.org/10.36487/ACG_rep/1710_38_Perras

14. Guido S., Acerbis R., Sossi G. Practice of the Doorstopper stress measurement method during the last 30 years in Italy. IOP Conference Series: Earth and Environmental Science. 2021;833:012167. https://doi.org/10.1088/1755-1315/833/1/012167

15. Feng Y., Pan P.-Z., Wang Z., Liu X., Miao S. A novel indirect optical method for rock stress measurement using microdeformation field analysis. Journal of Rock Mechanics and Geotechnical Engineering. 2024;16(9):3616–3628. https://doi.org/10.1016/j.jrmge.2023.10.011

16. Мельников Д.Н. Измерение напряжений в массиве пород Ждановского месторождения методом разгрузки (торцевой вариант). Вестник Кольского научного центра РАН. 2019;(1):57–61. https://doi.org/10.25702/KSC.2307-5228.2019.11.1.57-61 Melnikov D.N. Stress measurements in rock mass of the Zhdanovskoe deposit by the doorstopper method. Herald of the Kola Science Centre of RAS. 2019;(1):57–61. (In Russ.) https://doi.org/10.25702/KSC.2307-5228.2019.11.1.57-61

17. Самсонов А.А. Оценка состояния массива горных пород удароопасного месторождения «Олений ручей» по результатам измерений напряжений. Вестник Кольского научного центра РАН. 2019;(1):62–67. https://doi.org/10.25702/KSC.2307-5228.2019.11.1.62-67 Samsonov A.A. Assessment of rock mass state of Oleniy ruchey rock burst deposit based on the results of stress measurements. Herald of the Kola Science Centre of RAS. 2019;(1):62–67. (In Russ.) https://doi.org/10.25702/KSC.2307-5228.2019.11.1.62-67

18. Сентябов С.В., Карамнов Д.В. Методы определения первоначальных напряжений массива горных пород натурными измерениями. Проблемы недропользования. 2023;(1):54–63. https://doi.org/10.25635/2313-1586.2023.01.054 Sentyabov S.V., Karamnov D.V. Methods for determining the initial stresses of the rock massif by in-situ measurements. Problems of Subsoil Use. 2023;(1):54–63. (In Russ.) https://doi.org/10.25635/2313-1586.2023.01.054

19. Figueiredo B., Sjöberg J., Mattila J., Hakala M., Suikkanen J. Analysis and determination of the stress field at the Olkiluoto site. IOP Conference Series: Earth and Environmental Science. 2023;1124:012002. https://doi.org/10.1088/1755-1315/1124/1/012002

20. Мехеда В.А. Тензометрический метод измерения деформаций. Самара: Изд-во Самар. гос. аэрокосм. ун-та; 2011. 56 с. Режим доступа: https://sensor-sms.ru/f/tenzometricheskij_metod-meheda_va.pdf (дата обращения: 12.09.2024).

21. Кобаяси А. Экспериментальная механика. М.: Мир; 1990. Кн. 1. 552 с.

22. Пригоровский Н.И. Методы и средства определения полей деформаций и напряжений. М.: Машиностроение; 1983. 248 с. Режим доступа: https://djvu.online/file/Q8Fxta7aF3OAM (дата обращения: 12.09.2024).

23. Дайчик М.Л., Пригоровский Н.И., Хуршудов Г.Х. Методы и средства натурной тензометрии. М.: Машиностроение; 1989. 240 с. Режим доступа: https://djvu.online/file/Ec9tX4tOIwkWD (дата обращения: 12.09.2024).

24. Турчанинов И.А., Иванов В.И., Марков Г.А. Руководство по измерению напряжений в массиве скальных пород методом разгрузки: вариант торцевых измерений. Апатиты; 1970. 48 с.

25. Турчанинов И.А., Марков Г.А., Панин В.И., Иванов В.И. Экспериментальное определение полного тензора напряжений в массиве горных пород. Апатиты; 1973. 39 с.

26. Деменчук Н.П., Прилуцкий А.А. Основы теории напряженного и деформированного состояния. СПб.: Университет ИТМО; 2016. 118 с. Режим доступа: https://books.ifmo.ru/file/pdf/2098.pdf (дата обращения: 12.09.2024).

27. Реут Л.Е. Теория напряженного и деформированного состояния с примерами и задачами. Минск: БИТУ; 2008. 107 с. Режим доступа: https://rep.bntu.by/handle/data/3841 (дата обращения: 12.09.2024).

28. Водопьянов В.И., Савкин А.Н., Кондратьев О.В. Курс сопротивления материалов с примерами и задачами. Волгоград: ВолгГТУ; 2012. 136 с. Режим доступа: http://sopromat.vstu.ru/metod/sem/sem_11.pdf (дата обращения: 12.09.2024).

29. Каспарьян Э.В., Козырев А.А., Иофис М.А., Макаров А.Б. Геомеханика. М.: Высш. шк.; 2006. 503 с.

30. Bonnechere F. A comparative study of in situ rock stress measurements, M.S. Thesis, Univ. of Minnesota. 1967.

31. Van Heerden W. L. Determination of the accuracy of "doorstopper" stress measurements in coal, Rep. Coun. Scient. Ind. Res. S. Afr. 1968.