Justification of the possibility to involve productive fractions of the off-grade polycomponent ores in processing
A.Yu. Cheban
Institute of Mining of Far East Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation
Russian Mining Industry №6 / 2024 p. 168-172
Abstract: During open-pit mining, large volumes of off grade ores are delivered to the surface and dumped along with various grades of commercial ores. These ores may generally contain a significant amount of the useful metal, but their average grade does not allow for profitable processing of this mineral raw material, even with the use of heap leaching. At the same time, being blasted many ores produce ore fines that contain significant amounts of useful components. The conducted experimental studies of oxidized off-grade polycomponent ore from one of the copper-porphyry deposits showed an increased content of copper in the –15 mm size class, as well as gold and copper in the –2.5 mm size class. The article proposes a process flow diagram that involves separation of productive small and fine fractions from the off-grade ore by means of dry and wet screening, which are sent for separate processing using heap and cuvette leaching, respectively. Staged cuvette leaching of the productive fine fraction will ensure a relatively high extraction of metals into the productive solution in comparison with heap leaching. Implementation of the technology will significantly reduce the amount of metal lost with the off-grade ores.
Keywords: open pit mining, off-grade ore, screening, fine fraction, small fraction, heap leaching, cuvette leaching, gold, copper, metal extraction
For citation: Cheban A.Yu. Justification of the possibility to involve productive fractions of the off-grade polycomponent ores in processing. Russian Mining Industry. 2024;(6):168–172. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-168-172
Article info
Received: 13.10.2024
Revised: 25.11.2024
Accepted: 02.12.2024
Information about the author
Anton Yu. Cheban – Cand. Sci. (Eng.), Leading Researcher of the Laboratories Geotechnology and Mining Thermal Physics, Institute of Mining of Far East Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Оганесян Л.В., Мирлин Е.Г. Проблема исчерпания минерально-сырьевых ресурсов земной коры. Горная промышленность. 2019;(6):100–105. https://doi.org/10.30686/1609-9192-2019-6-148-100-105 Oganesian L.V., Mirlin E.G. Issues of Resource Depletion in Earth Crust. Russian Mining Industry. 2019;(6):100–105. (In Russ.) https://doi.org/10.30686/1609-9192-2019-6-148-100-105
2. Голик В.И., Титова А.В. Перспективы увеличения минеральной базы цветной металлургии. Горная промышленность. 2024;(3):77–84. https://doi.org/10.30686/1609-9192-2024-3-77-84 Golik V.I., Titova A.V. Prospects for increasing the mineral base of the non-ferrous metallurgy. Russian Mining Industry. 2024;(3):77–84. (In Russ.) https://doi.org/10.30686/1609-9192-2024-3-77-84
3. Олейник Д.Н., Рыльникова М.В., Швабенланд Е.Е. Совершенствование правовых основ управления отходами недропользования в России. Рациональное освоение недр. 2023;(6):24–35. Oleinik D.N., Ryl'nikova M.V., Shvabenland E.E. Improving the legal framework for the mining wastemanagement in Russia. Ratsionalnoe Osvoenie Nedr. 2023;(6):24–35. (In Russ.)
4. Trubetskoi K.N., Zakharov V.N., Galchenko Y.P. Naturelike and convergent technologies for developing lithosphere mineral resources. Herald of the Russian Academy of Sciences. 2020;90(3):332–337. https://doi.org/10.1134/S1019331620030065
5. Chanturia V.A., Shadrunova I.V., Medyanik N.L., Mishurina O.A. Electric flotation extraction of manganese from hydromineral wastes at yellow copper deposits in the South Ural. Journal of Mining Science. 2010;46(3):311–316. https://doi.org/10.1007/s10913-010-0038-1
6. Zhang Z.-X., Hou D.-F., Aladejare A., Ozoji T., Qiao Y. World mineral loss and possibility to increase ore recovery ratio in mining production. International Journal of Mining Reclamation and Environment. 2021;35(9):670–691. https://doi.org/10.1080/17480930.2021.1949878
7. Robben C., Wotruba H. Sensor-based ore sorting technology in mining-past, present and future. Minerals. 2019;9(9):523. https://doi.org/10.3390/min9090523
8. Rasskazova A.V., Sekisov A.G., Kirilchuk M.S., Vasyanov Y.A. Stage-activation leaching of oxidized copper– gold ore: theory and technology. Eurasian Mining. 2020;(1):52–55. https://doi.org/10.17580/em.2020.01.10
9. Robertson S.W., van Staden P.J., Cherkaev A., Petersen J. Properties governing the flow of solution through crushed ore for heap leaching. Hydrometallurgy. 2022;208:105811. https://doi.org/10.1016/j.hydromet.2021.105811
10. Cui F., Mu W., Zhai Y., Guo X. The selective chlorination of nickel and copper from low grade nickel-copper sulfide-oxide ore: Mechanism and kinetics. Separation and Purification Technology. 2020;239:116577. https://doi.org/10.1016/j.seppur.2020.116577
11. Sekisov G.V., Cheban A.Yu. Low-waste mining technology for structurally complex deposits with mixed-type process flows of ore extraction and processing. Journal of Mining Science. 2021;57(6):978–985 https://doi.org/10.1134/S1062739121060107
12. Халезов Б.Д. Кучное выщелачивание медных и медно-цинковых руд. Екатеринбург: РИО УрО РАН; 2013. 346 с.
13. Войлошников Г.И., Бывальцев А.В., Войлошникова Н.С., Ращенко А.Ф., Мусин Е.Д. Способ переработки золотомедистых руд. Патент РФ. №2385961 С1, МПК C22B11/08, C22B3/24.: №2008110770/02: заявл. 20.03.2008: опубл. 10.04.2010.
14. Рассказов И.Ю., Секисов А.Г., Рассказова А.В., Соболев А.А. Обоснование области использования и технологических параметров селективного кучного выщелачивания золота при открытой разработке сложноструктурных месторождений. Горный информационно-аналитический бюллетень. 2020;(10):106–114. https://doi.org/10.25018/0236-1493-2020-10-0-106-114 Rasskazov I.Yu., Sekisov A.G., Rasskazova A.V., Sobolev A.A. Justification of application field and technological parameters of selective heap gold leaching in open pit mining of complex-structure deposits. Mining Information and Analytical Bulletin. 2020;(10):106–114. (In Russ.) https://doi.org/10.25018/0236-1493-2020-10-0-106-114
15. Секисов А.Г., Резник Ю.Н., Зыков Н.В., Шумилова Л.В., Лавров А.Ю., Манзырев Д.В., Климов С.С., Королев В.С., Конарева Т.Г. Способ кюветно-кучного выщелачивания металлов из минеральной массы. Патент РФ. №2350665 С2, МПК C22B 3/18, C22B 11/08. №2007118333/03: заявл. 16.05.2007: опубл. 27.03.2009.
16. Чепрасов И.В., Романчук А.И., Твердов А.А., Никишичев С.Б., Иванов И.А. Переработка руд с использованием современной технологии крупнокусковой фотометрической сепарации. Золото и технологии. 2014;(1):62–66. Режим доступа: https://zolteh.ru/technology_equipment/pererabotka_rud_s_ispolzovaniem_sovremennoy_tekhnologii_krupnokuskovoy_fotometricheskoy_separatsii/ (дата обращения: 21.09.2024). Cheprasov I.V., Romanchuk A.I., Tverdov A.A., Nikishichev S.B., Ivanov I.A. Ore processing using modern technology of largelump photometric separation. Zoloto i Tekhnologii. 2014;(1):62–66. (In Russ.) Available at: https://zolteh.ru/technology_equipment/pererabotka_rud_s_ispolzovaniem_sovremennoy_tekhnologii_krupnokuskovoy_fotometricheskoy_separatsii/ (accessed: 21.09.2024).
17. Чебан А.Ю. Технология складирования некондиционных руд с выделением продуктивных мелких фракций. Известия Тульского государственного университета. Науки о Земле. 2024;(1):388–398. Cheban A.Yu. Technology for storage of sub-specific ores with separation of productive fine fractions. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2024;(1):388–398. (In Russ.)