Assessment of the journal bearing health status in a drum mill used as a part of arctic complex mining equipment

DOI: https://doi.org/10.30686/1609-9192-2024-6-144-151

Читать на русскоя языкеA.S. Korogodin, S.L. Ivanov
St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation

Russian Mining Industry №6 / 2024 p. 144-151

Abstract: The paper presents the materials for maintenance of the specified availability level of the mining disintegration equipment operated as a part of a floating mining complex used within the framework of an innovative geotechnology for the development of the Pavlovskoye deposit on the Yuzhny Island of Novaya Zemlya archipelago. The approach to manage maintenance and repair of the drum mills of the floating complex is based on the combined hierarchical system dependent on assessing the risk level of possible failures according to the adapted Fine and Kinney method with forecasting of the residual life of the journal bearing through estimating their thermal fields according to the Shewhart individuals control charts in the course of real-time monitoring. This approach allows predicting the preventive maintenance periods for the drum mill bearings immediately when the mining equipment is standing still with the use of attachable machine modules.

Keywords: wearing of journal bearings, monitoring by thermal characteristics, disintegration equipment, journal bearings, Shewhart charts, remaining life estimation, floating mining complex, Pavlovskoye deposit

Acknowledgments: The authors express their gratitude to Petr P. Skvortsov, General Director of ZVEZDA PJSC, Damir D. Salikhov, Chief Technologist, Anton R. Solyanik, his deputy, as well as Vladislav V. Kudryashov, Head of the group for designing tooling, tools and test benches, for their help and consultations in conducting the experiment.

For citation: Korogodin A.S., Ivanov S.L. Assessment of the technical condition of drum mill supporting sliding bearings during operation as part of an arctic mining equipment complex. Russian Mining Industry. 2024;(6):144–151. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-144-151


Article info

Received: 01.10.2024

Revised: 18.11.2024

Accepted: 23.11.2024


Information about the authors

Artur S. Korogodin – Postgraduate Student, Department of Mechanical Engineering, St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-3398-6342; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Sergey L. Ivanov – Dr. Sci. (Eng.), Professor, Department of Mechanical Engineering, St. Petersburg Mining University of Empress Catherine II, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-7014-2464; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


Author’s Contribution

All the authors have made an equal contribution to the publication.

Conflict of interests

The authors declare no conflict of interest.


References

1. Bochneva A., Lalomov A., LeBarge W. Placer mineral deposits of Russian Arctic zone: Genetic prerequisites of formation and prospect of development of mineral resources. Ore Geology Reviews. 2021;138: 104349. https://doi.org/10.1016/j.oregeorev.2021.104349

2. Белов С.В., Скрипниченко В.А., Ушакова В.А. Горно-геологическая и экономическая характеристика месторождений свинцово-цинковых руд в российской Арктике. Арктика и Север. 2022;(48):5–28. https://doi.org/10.37482/issn2221-2698.2022.48.5 Belov S.V., Skripnichenko V.A., Ushakova V.A. Mining-Geological and Economic Characteristics of LeadZinc Ore Deposits in the Russian Arctic. Arctic and North. 2022;(48):5–28. (In Russ.) https://doi.org/10.37482/issn2221-2698.2022.48.5

3. Kurta I., Zemlyansky V. Preconditions for Technological Development of the Construction Industry of the North for the Arrangement of the Mineral Complex of the Russian Arctic. Procedia Engineering. 2016;165:1542–1546. https://doi.org/10.1016/j.proeng.2016.11.891

4. Tabata S., Otsuka N., Goto M., Takahashi M. Economy, society and governance in the Arctic: Overview of ArCS research project in the field of humanities and social sciences (2015–2020). Polar Science. 2021;27:100600. https://doi.org/10.1016/j.polar.2020.100600

5. Standring W.J.F., Dowdall M., Amundsen I., Strand P. Floating nuclear power plants: Potential implications for radioactive pollution of the northern marine environment. Marine Pollution Bulletin. 2009;58(2):174–178. https://doi.org/10.1016/j.marpolbul.2008.11.025

6. Naseri M., Baraldi P., Compare M., Zio E. Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions. Reliability Engineering & System Safety. 2016;152:66–82. https://doi.org/10.1016/j.ress.2016.03.004

7. Юнгмейстер Д. А., Смоленский М. П., Исаев А. И., Ефимов Ф. А. Конструкции и параметры механизмов шагания для комплекса добычи рассредоточенных по морскому дну полезных ископаемых. Горный информационно-аналитический бюллетень. 2023;(11-1):159–174. https://doi.org/10.25018/0236_1493_2023_111_0_159 Yungmeister D.A., Smolenskii M.P., Isaev A.I., Efimov F.A. Designs and parameters of stepping mechanisms for the complex of extraction of minerals scattered on the seabed. Mining Informational and Analytical Bulletin. 2023;(11-1):159–174. (In Russ.) https://doi.org/10.25018/0236_1493_2023_111_0_159

8. Юнгмейстер Д.А., Смоленский М.П., Сержан С.Л., Уразбахтин Р.Ю. Параметры шагающего устройства для добычи полезных ископаемых, рассредоточенных по морскому дну. Устойчивое развитие горных территорий. 2024;16(2):487– 502. https://doi.org/10.21177/1998-4502-2024-16-2-487-502 Yungmeister D.A., Smolenskii M.P., Serzhan S.L., Urazbakhtin R.Y. Parameters of a stepping device for mining of scattered minerals on the sea bed. Sustainable Development of Mountain Territories. 2024;16(2):487–502. (In Russ.). https://doi.org/10.21177/1998-4502-2024-16-2-487-502

9. Мякотных А.А., Иванова П.В., Иванов С.Л. К вопросу классификации комплексов добычи торфяного сырья. Горная промышленность. 2023;(6):137–142. https://doi.org/10.30686/1609-9192-2023-6-137-142 Myakotnykh A.A., Ivanova P.V., Ivanov S.L. On classification of peat extraction complexes. Russian Mining Industry. 2023;(6):137–142. (In Russ.) https://doi.org/10.30686/1609-9192-2023-6-137-142

10. Габов В.В., Суан Н.В., Задков Д.А., Тхо Ч.Д. Увеличение содержания крупных фракций в добываемой массе угля комбайном с использованием парных срезов. Записки Горного института. 2022;257:764–770. https://doi.org/10.31897/PMI.2022.66 Gabov V.V., Xuan N.V., Zadkov D.A., Tho T.D. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts // Journal of Mining Institute. 2022;257:764–770. (In Russ.) https://doi.org/10.31897/PMI.2022.66

11. Lepov V.V., Panteleev K.D., Rahmilevich E.G., Yrcev E.S. A system approach to research development and creation of the complex engineering systems for Arctic and Subarctic. Procedia Structural Integrity. 2020;30:82–86. https://doi.org/10.1016/j.prostr.2020.12.014

12. Wakiru J., Pintelon L., Muchiri P.N., Chemweno P. Maintenance optimization: Application of remanufacturing and repair strategies. Procedia CIRP. 2018;69:899–904. https://doi.org/10.1016/j.procir.2017.11.008

13. Шешукова Е.И., Шибанов Д.А., Иванов С.Л., Шишкин П.В. Оценка нагрузок приводов рабочего оборудования карьерного экскаватора (часть 2). Горная промышленность. 2024;(4):108–114. https://doi.org/10.30686/1609-9192-2024-4-108-114 Sheshukova E.I., Shibanov D.A., Ivanov S.L., Shishkin P.V. Assessment of loads at the working attachment of a mine shovel (Part 2). Russian Mining Industry. 2024;(4):108–114. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-108-114

14. Габов В. В., Гаращенко Ж. М. Обоснование структуры механизированного комплекса для отработки целиков угольных шахт. Горный информационно-аналитический бюллетень. 2023;(11-1):38–50. (In Russ.) https://doi.org/10.25018/0236_1493_2023_111_0_38 Gabov V.V., Garashchenko Zh.M. Defining the structure of a mechanised complex for extracting coal pillars. Mining Informational and Analytical Bulletin. 2023;(11-1):38–50. (In Russ.) https://doi.org/10.25018/0236_1493_2023_111_0_38

15. Михайлов А.В., Федоров А.С. Анализ параметров мундштука шнекового пресса для 3D-экструзии торфяных кусков трубчатого типа. Записки Горного института. 2021;249:351–365. https://doi.org/10.31897/PMI.2021.3.4 Mikhailov A.V., Fedorov A.S. Analysis of the screw press mouthpiece parameters for 3D extrusion of peat pieces of tubular type. Journal of Mining Institute. 2021;249:351–365. https://doi.org/10.31897/PMI.2021.3.4

16. Теплякова А.В., Азимов А.М., Алиева Л., Жуков И.А. Обзор и анализ технических решений для повышения долговечности и улучшения технологичности элементов ударных узлов бурильных машин. Горный информационно-аналитический бюллетень. 2022;(9):120–132. https://doi.org/10.25018/0236_1493_2022_9_0_120 Teplyakova A.V., Azimov A.M., Alieva L., Zhukov I.A. Improvement of manufacturability and endurance of percussion drill assemblies: review and analysis of engineering solutions. Mining Informational and Analytical Bulletin. 2022;(9):120–132. (In Russ.) https://doi.org/10.25018/0236_1493_2022_9_0_120

17. Edidin A.A., Jewett C.W., Kalinowski A., Kwarteng K., Kurtz S.M. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials. 2000;21(14):1451–1460. https://doi.org/10.1016/S0142-9612(00)00021-1

18. Максаров В.В., Минин А.О., Захарова В.П. Технологическое обеспечение качества расточных поверхностей изделий из алюминиевого сплава АМц на основе высокочастотного волнового воздействия. Цветные металлы. 2023;(4):90– 95. https://doi.org/10.17580/tsm.2023.04.12 Maksarov V.V., Minin A.O., Zakharova V.P. Ensuring surface quality in AlMn alloy items during high-frequency wave impact boring. Tsvetnye Metally. 2023;(4):90–95. (In Russ.) https://doi.org/10.17580/tsm.2023.04.12

19. Максаров В.В., Каренина Р.А., Синюков М.С. Совершенствование технологии финишной абразивной обработки в магнитном поле резьбовой поверхности замкового соединения из конструкционной легированной стали для буровых штанг. Черные металлы. 2024;(9):65–70. https://doi.org/10.17580/chm.2024.09.10 Maksarov V.V., Karenina R.A., Sinyukov M.S. Improving the technology of finishing abrasive treatment in a magnetic field of the lock joint threaded surface of the structural alloy steel lock joint for drill rods. Chernye Metally. 2024;(9):65–70. (In Russ.) https://doi.org/10.17580/chm.2024.09.10

20. Адмакин М.А., Халимоненко А.Д., Захарова В.П., Нгуен В.Д. Обрабатываемость резанием маломагнитных высокомарганцовистых сталей. Черные металлы. 2023;(2):82–87. https://doi.org/10.17580/chm.2023.02.12 Admakin M.A., Khalimonenko A.D., Zakharova V.P., Van Dao N. Machinability of cutting of low-magnetic high-manganese steels. Chernye Metally. 2023;(2):82–87. (In Russ.) https://doi.org/10.17580/chm.2023.02.12

21. Semykina A., Zagorodnii N., Novikov I., Novikov, A. Main directions of improving the maintenance and repair of vehicle units in the Far North. Transportation Research Procedia. 2021;57:611–616. https://doi.org/10.1016/j.trpro.2021.09.090

22. Mikhailov A.V., Shibanov D.A., Bessonov A.E., Bouguebrine C. Comprehensive assessment production efficiency of electric rope shovel through operator qualification criteria. International Journal of Engineering. 2024;37(7):1231–1238. https://doi.org/10.5829/IJE.2024.37.07A.03

23. Zhao R., Xie X., Yu W. Repair equipment allocation problem for a support-and-repair ship on a deep sea: A hybrid multi-criteria decision making and optimization approach. Expert Systems with Applications. 2020;160: 113658. https://doi.org/10.1016/j.eswa.2020.113658

24. Bardyshev O., Repin S., Zazykin A., Evtyukov S., Rajczyk J., Ruchkina I. et al. Study on the aspects of organizing the repair of construction machinery in the Arctic. Transportation Research Procedia. 2021;57:49–55. https://doi.org/10.1016/j.trpro.2021.09.024

25. Вальнев В.В., Котелева Н.И. К вопросу об автоматизации технического обслуживания и ремонта промышленного оборудования. Современные наукоемкие технологии. 2024;(5-2):276–283. https://doi.org/10.17513/snt.40040 Valnev V.V., Koteleva N.I. To the question of automation of maintenance and repair of industrial equipment. Modern High Technologies. 2024;(5-2):276–283. (In Russ.) https://doi.org/10.17513/snt.40040

26. Салимов А.Э., Шибанов Д.А., Иванов С.Л. Риски отказов карьерного экскаватора, связанные с его техническим обслуживанием и ремонтом. Горная промышленность. 2024;(2):97–102. https://doi.org/10.30686/1609-9192-2024-2-97-102 Salimov A.E., Shibanov D.A., Ivanov S.L. Failure risks of mine excavator associated with its maintenance and repair. Russian Mining Industry. 2024;(2):97–102. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-97-102

27. Neves M.D.M., Andrade A.H.P., Silva D.N. Analysis of the criticality of flaws found in trunnion of grinding ball mills used in mining plants. Engineering Failure Analysis. 2016;61:28–36. https://doi.org/10.1016/j.engfailanal.2015.07.037

28. Zhukov I.A., Martyushev N.V., Zyukin D.A., Azimov A.M., Karlina A.I. Modification of hydraulic hammers used in repair of metallurgical units. Metallurgist. 2023;66(11-12):1644–1652. https://doi.org/10.1007/s11015-023-01480-w

29. de Pater I., Mitici M. Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components. Reliability Engineering & System Safety. 2021;214:107761. https://doi.org/10.1016/j.ress.2021.107761

30. Chernyaev I., Oleshchenko E., Danilov I. Methods for continuous monitoring of compliance of vehicles’ technical condition with safety requirements during operation. Transportation Research Procedia. 2020;50:77–86. https://doi.org/10.1016/j.trpro.2020.10.010

31. Максаров В.В., Ольт Ю., Кексин А.И., Щеглова Р.А. Применение композиционных порошков в процессе магнитноабразивной обработки метчиков для повышения качества резьбы в изделиях из коррозионно-стойких сталей. Черные металлы. 2022;(2):49–55. https://doi.org/10.17580/chm.2022.02.09 Maksarov V.V., Olt J., Keksin A.I., Shcheglova R.A. The use of composite powders in the process of magnetic-abrasive finishing of taps to improve the quality of threads in articles made of corrosion-resistant steels. Chernye Metally. 2022;(2):49–55. (In Russ.) https://doi.org/10.17580/chm.2022.02.09

32. Petkova A.P., Gorbatyuk S.M., Sharafutdinova G.R., Nagovitsyn V.A. Selection of materials and technologies for the electrochemical synthesis of sodium ferrate. Metallurgist. 2024;68(3):449–459. https://doi.org/10.1007/s11015-024-01747-w

33. Михайлов А.В., Соловьев И.В. Анализ грейферной выемки волокнистого торфяного сырья. Устойчивое развитие горных территорий. 2023;15(4):1098–1107. https://doi.org/10.21177/1998-4502-2023-15-4-1098-1107 Soloviev I.V., Mikhailov A.V. Grab excavation analysis of fibrous peat raw material. Sustainable Development of Mountain Territories. 2023;15(4):1098–1107. (In Russ.) https://doi.org/10.21177/1998-4502-2023-15-4-1098-1107

34. Verl A., Heisel U., Walther M., Maier D. Sensorless automated condition monitoring for the control of the predictive maintenance of machine tools. CIRP Annals. 2009;58(1):375–378. https://doi.org/10.1016/j.cirp.2009.03.039 35. Zhou X., Xi L., Lee J. Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliability Engineering & System Safety. 2007;94(4):530–534. https://doi.org/10.1016/j.ress.2006.01.006