On managing the state of ore-bearing massifs by controlling the stresses during underground mining of ores
V.I. Golik
Moscow Polytechnic University, Moscow, Russian Federation
Russian Mining Industry №1 / 2025 p. 123-128
Abstract: Man-made intervention in the subsurface during mining is accompanied by the development of existing stresses in the ore-bearing rock masses. Insufficient consideration of geomechanical conditions of mining is accompanied by high losses and dilution of ores. Environmental and economic performance of mining facilities can be improved by controlling natural and man-made stresses through introducing the rock masses into the triaxial compression state. Details of the theoretical and practical aspects of stress management in the rock mass are provided by the data obtained in the research. Determination of the structural weakening of rocks, defining regularities in tectonic fracture distribution and confinement to tectonic structures, creation of the engineering-geological model of the rock mass. Modeling of the rock mass state was performed on the equivalent materials based on the geomechanical hazard criterion. Prediction of the geological and structural factors of facilities failure was made through calculation of the rock mass deformations. Regularities in behavior of natural and man-made rock mases have been identified depending on changes in the stress redistribution within the rock mass. A mathematical model has been refined that describes the strength loss processes in the rock structures under the impact of critical stresses. A methodology of environmental assessment as a function of the total of natural and man-made factors has been developed. The rock mass consolidation parameters that are optimized by the factor of resistance to the stress redistribution in the rock massif have been justified. A method to calculate environmentally correct and economically feasible parameters for managing the state of mining facilities is proposed and examples of its implementation are provided. The task of assuring the quality of the mined mineral raw materials is addressed by controlling the stress state of the rock masses and can be solved based on further research. The results of the study can be relevant in the underground development of solid minerals.
Keywords: rock mass, geomechanical processes, triaxial compression, natural stresses, man-made stresses, mining facilities
For citation: Golik V.I. On managing the state of ore-bearing massifs by controlling the stresses during underground mining of ores. Russian Mining Industry. 2025;(1):123–128. (In Russ.) https://doi.org/10.30686/1609-9192-2025-1-123-128
Article info
Received: 02.11.2024
Revised: 09.01.2025
Accepted: 11.01.2025
Information about the author
Vladimir I. Golik – Dr. Sci. (Eng.), Professor of the Department of Metallurgy of Moscow Polytechnic University, Moscow, Russian Federation; https://orcid.org/0000-0002-1181-8452; e-mail: v.i.golik@mail.ru
References
1. Голик В.И., Разоренов Ю.И., Дмитрак Ю.В., Габараев О.З. Повышение безопасности подземной добычи руд учетом геодинамики массива. Безопасность труда в промышленности. 2019;(8):36–42. https://doi.org/10.24000/0409-2961-2019-8-36-42 Golik V.I., Razorenov Yu.I., Dmitrak Yu.V., Gabaraev O.Z. Safety improvement of the underground ore extraction considering mass geodynamics. Occupational Safety in Industry. 2019;(8):36–42. (In Russ.) https://doi.org/10.24000/0409-2961-2019-8-36-42
2. Ляшенко В.И., Хоменко О.Е., Голик В.И. Развитие природоохранных и ресурсосберегающих технологий подземной добычи руд в энергонарушенных массивах. Горные науки и технологии. 2020;5(2):104–118. https://doi.org/10.17073/2500-0632-2020-2-104-118 Lyashenko V.I., Khomenko O.E., Golik V.I. Friendly and resource-saving methods of underground ore mining in disturbed rock masses. Mining Science and Technology (Russia). 2020;5(2):104-118. https://doi.org/10.17073/2500-0632-2020-2-104-118
3. Flores G., Catalan A. A transition from a large open pit into a novel “macroblock variant” block caving geometry at Chuquicamata mine, Codelco Chile. Journal of Rock Mechanics and Geotechnical Engineering. 2019;11(3):549–561. https://doi.org/10.1016/j.jrmge.2018.08.010
4. Simser B.P. Rockburst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019;11(5):1036–1043. https://doi.org/10.1016/j.jrmge.2019.07.005
5. Айнбиндер И.И., Пацкевич П.Г., Красюкова Е.В. Обоснование параметров опасных зон при комбинированной разработке кимберлитовых месторождений Якутии. Известия Тульского государственного университета. Науки о Земле. 2019;(3):48–60. Aynbinder I.I., Patskevich P.G., Krasyukova E.V. Substantiation of dangerous area parameters in the combined development of kimberlite deposits of Yakutia. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2019;(3):48–60. (In Russ.)
6. Батугин А.С. Общие закономерности проявления сильных горных ударов и индуцированных землетрясений на участках с предельно напряженным состоянием земной коры. Горный журнал. 2021;(1):22–27. https://doi.org/10.17580/gzh.2021.01.04 Batugin A.S. General features of strong rock bursts and induced earthquakes in critical-stress areas of the Earth’s crust. Gornyi Zhurnal. 2021;(1):22–27. (In Russ.) https://doi.org/10.17580/gzh.2021.01.04
7. Buzylo V., Pavlychenko A., Borysovska O., Saveliev D. Investigation of processes of rocks deformation and the earth’s surface subsidence during underground coal mining. E3S Web of Conferences. 2019;123:01050. https://doi.org/10.1051/e3sconf/201912301050
8. Wojtecki Ł., Konicek P., Mendecki M.J., Gołda I., Zuberek W.M. Geophysical evaluation of effectiveness of blasting for roof caving during longwall mining of coal seam. Pure and Applied Geophysics. 2020;177(2):905–917. https://doi.org/10.1007/s00024-019-02321-1
9. Yin S., Shao Y., Wu A., Wang H., Liu X., Wang Y. A systematic review of paste technology in metal mines for cleaner production in China. Journal of Cleaner Production. 2020;247:119590. https://doi.org/10.1016/j.jclepro.2019.119590
10. Qi C., Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Minerals Engineering. 2019;144:106025. https://doi.org/10.1016/j.mineng.2019.106025
11. Golik V.I., Stradanchenko S.G., Maslennikov S.A. Experimental study of non-waste recycling tailings ferruginous quartzite. International Journal of Applied Engineering Research. 2015;10(15):35410–35416. Available at: https://ripublication.com/ijaer10/ijaerv10n15_66.pdf (accessed: 30.11.2024).
12. Рыбак Я., Хайрутдинов М.М., Конгар-Сюрюн Ч.Б., Тюляева Ю.С. Ресурсосберегающие технологии освоения месторождений полезных ископаемых. Устойчивое развитие горных территорий. 2021;13(3):406–415. Rybak Ya., Khayrutdinov M.M., Kongar-Syuryun Ch.B., Tyulyayeva Yu.S. Resource-saving technologies for development of mineral deposits. Sustainable Development of Mountain Territories. 2021;13(3):406–415. (In Russ.)