Integrated management services for electromechanical mining equipment efficiency

DOI: https://doi.org/10.30686/1609-9192-2025-1S-41-46

Читать на русскоя языкеA.D. Buldysko, Yu.L. Zhukovskiy
Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation

Russian Mining Industry №1S / 2025 p. 41-46

Abstract: The paper presents functional features, properties and requirements for implementation of the algorithms necessary to ensure the transition to the predictive maintenance system for electric drives of the mining transport machines to manage the efficiency of equipment operation. A set of algorithms based on artificial intelligence has been developed, which allows the transition to the predictive maintenance system to improve the efficiency of the drive operation. The complex structure of software services for electric drive operation control has been justified, in which additional power losses due to defective components as well as equivalent emissions of the electric drive and the drive mechanism are taken into account as the decisionmaking criteria. The paper defines the control criteria, diagnostic parameters and algorithms required for diagnostics and prediction of defects development that determine the efficiency of electric drive operation in the mining and transportation sector.

Keywords: electric drive, digital technologies, machine learning, predictive maintenance, energy efficiency

For citation: Buldysko A.D., Zhukovskiy Yu.L. Integrated management services for electromechanical mining equipment efficiency. Russian Mining Industry. 2025;(1S):41–46. https://doi.org/10.30686/1609-9192-2025-1S-41-46


Article info

Received: 13.01.2025

Revised: 11.02.2025

Accepted: 12.02.2025


Information about the authors

Aleksandra D. Buldysko – Cand. Sci. (Eng.), Assistant, Educational Research Center for Digital Technologies, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; e-mail: Buldysko_AD@pers.spmi.ru

Yuriy L. Zhukovskiy – Dr. Sci. (Eng.), Director Educational Research Center for Digital Technologies, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation


References

1. Shabalov M.Yu., Zhukovskiy Yu.L., Buldysko A.D., Gil B., Starshaia V.V. The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Reports. 2021;7:2664–2680. https://doi.org/10.1016/j.egyr.2021.05.001

2. Simsek Y., Santika W.G., Anisuzzaman M., Urmee T., Bahri P.A., Escobar R. An analysis of additional energy requirement to meet the sustainable development goals. Journal of Cleaner Production. 2020;272:122646. https://doi.org/10.1016/j.jclepro.2020.122646

3. Litvinenko V.S., Tsvetkov P.S., Molodtsov K.V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020;(1):36–41. https://doi.org/10.17580/em.2020.01.07

4. Beloglazov I., Plaschinsky V. Development MPC for the Grinding Process in SAG Mills Using DEM Investigations on Liner Wear. Materials. 2024;17(4):795. https://doi.org/10.3390/ma17040795

5. Safiullin R., Efremova V., Ivanov B. The method of multi-criteria evaluation of the effectiveness of the integrated control system of a highly automated vehicle. The Open Transportation Journal. 2024;18:e18744478309909. https://doi.org/10.2174/0118744478309909240807051315

6. Pryalukhin A.F., Martyushev N.V., Malozyomov B.V., Klyuev R.V., Filina O.A., Konyukhov V.Yu., Makarov A.A. Improvement of operational reliability of units and elements of dump trucks taking into account the least reliable elements of the system. World Electric Vehicle Journal. 2024;15(8):365. https://doi.org/10.3390/wevj15080365

7. Сержан С.Л., Скребнев В.И., Малеванный Д.В. Исследование влияния шероховатости стальных и полимерных труб на потери напора при гидротранспорте хвостовой пульпы. Обогащение руд. 2023;(4):41–49. https://doi.org/10.17580/or.2023.04.08 Serzhan S.L., Skrebnev V.I., Malevanny D.V. Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Obogashchenie Rud. 2023;(4):41–49. https://doi.org/10.17580/or.2023.04.08

8. Васильев Б.Ю. Энергосберегающий многодвигательный электропривод с индивидуальным управлением приводными двигателями и активной коррекцией коэффициента мощности. Автоматизация в промышленности. 2017;(3): 43–49. Режим доступа: https://avtprom.ru/article/energosberegayushchii-mnogodviga (дата обращения: 17.10.2024). Vasiliev B.Yu. Energy-saving multi-motor electric drive with individual control of the drive motors and active power factor correction. Automation in Industry. 2017;(3):43–49. (In Russ.) Available at: https://avtprom.ru/article/energosberegayushchiimnogodviga (accessed: 17.10.2024).

9. Николаев А.В., Фёт Ш., Кычкин А.В. Использование кибернетического подхода к ценозависимому управлению спросом на потребляемую подземным горно-добывающим предприятием электроэнергию. Записки Горного института. 2023;261:403–414. https://doi.org/10.31897/PMI.2022.33 Nikolaev A.V., Vöth S., Kychkin A.V. Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption. Journal of Mining Institute. 2023;261:403–414. https://doi.org/10.31897/PMI.2022.33

10. Shushpanov I., Suslov K., Ilyushin P., Sidorov D.N. Towards the flexible distribution networks design using the reliability performance metric. Energies. 2021;14(19):6193. https://doi.org/10.3390/en14196193

11. Botyan E.Y., Lavrenko S.A., Pushkarev A.E. Evaluation of Complicated Mining Exploitation Conditions Influence on Service Life of Open Pit Trucks Suspensions with Remote Monitoring Systems. International Journal of Engineering. 2024;37(11):22682275. https://doi.org/10.5829/ije.2024.37.11b.12

12. Кулешов А.А., Григорьев Е.А. Прогнозирование ресурса элементов погрузочно-доставочных машин на основе определения их эксплуатационной нагруженности. Записки Горного института. 2002;152:169–172. Режим доступа: https://pmi.spmi.ru/pmi/article/view/9360 (дата обращения: 17.10.2024). Kuleshov A.A., Grigorev E.A. Forecasting the service life of loading and unloading machine elements on the basis of determining their operational load. Journal of Mining Institute. 2002;152:169–172. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/9360 (accessed: 17.10.2024).

13. Матюшин В.А. Автоматизация управления эксплуатацией и ремонтом оборудования горного предприятия (на примере Восточного рудника ОАО «Апатит»). Записки Горного института. 2008;177:7–11. Режим доступа: https://pmi.spmi.ru/pmi/article/view/7233 (дата обращения: 17.10.2024). Matyushin V.A. Automation of management of operation and repair of the equipment of the mining enterprise (on the example of the eastern mine of OJSC Apatit). Journal of Mining Institute. 2008;177:7–11. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/7233 (accessed: 17.10.2024).

14. Сафиуллин Р.Н., Сафиуллин Р.Р., Сорокин К.В. Метод оценки и прогнозирования технического состояния ресурсных элементов карьерных самосвалов на основе контрольных карт Шухарта. Горный информационно-аналитический бюллетень. 2024;(7):111–124. https://doi.org/10.25018/0236_1493_2024_7_0_111 Safiullin R.N., Safiullin R.R., Sorokin K.V. Assessment and prediction of technical condition of dump truck life components using the Shewhart control charts. Mining Informational and Analytical Bulletin. 2024;(7):111–124. (In Russ.) https://doi.org/10.25018/0236_1493_2024_7_0_111

15. Котелева Н.И., Вальнев В.В., Королев Н.А. Технология дополненной реальности как средство технического обслуживания оборудования металлургических производств. Цветные металлы. 2023;(4):14–23. https://doi.org/10.17580/tsm.2023.04.02 Koteleva N.I., Valnev V.V., Korolev N.A. Augmented reality as a means of metallurgical equipment servicing. Tsvetnye Metally. 2023;(4):14–23. (In Russ.) https://doi.org/10.17580/tsm.2023.04.02

16. Nevskaya M., Shabalova A., Kosovtseva T., Nikolaychuk L. Applications of simulation modeling in mining project risk management: criteria, algorithm, evaluation. Journal of Infrastructure, Policy and Development. 2024;8(8):5375. https://doi.org/10.24294/jipd.v8i8.5375

17. Mitchell Jr Z.W. A statistical analysis of construction equipment repair costs using field data and the cumulative cost model [Dissertation]. Virginia Polytechnic Institute and State University; 1998. 253 p. Available at: https://archive.org/details/DTIC_ADA346875/mode/2up (accessed: 17.10.2024).

18. Сычев Ю.А., Аладьин М.Е. Анализ эффективности работы универсальных регуляторов качества электрической энергии на основе активных преобразователей в промышленных системах электроснабжения с нелинейной нагрузкой. Горный информационно-аналитический бюллетень. 023;(11):159–181. https://doi.org/10.25018/0236_1493_2023_11_0_159 Sychev Y.A., Aladin M.E. Overall performance analysis of general-purpose power quality controls on the basis of active converters in nonlinearly loaded industrial power lines. Mining Informational and Analytical Bulletin. 2023;(11):159–181. (In Russ.). https://doi.org/10.25018/0236_1493_2023_11_0_159

19. Qi Q., Tao F., Zuo Y., Zhao D. Digital twin service towards smart manufacturing. Procedia CIRP. 2018;72:237–242. https://doi.org/10.1016/j.procir.2018.03.103