A method to optimize parameters of software and hardware for dump truck remote monitoring systems using QR code recognition
R.N. Safiullin1, Haotian Tian1, R.R. Safiullin1, M.R. Bashirov2, E.G. Kozin3
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation
2 Interregional Territorial Department of the Federal Service for Transport Supervision in the North-West Federal District, St. Petersburg, Russian Federation
3 Saint Petersburg State Unitary Enterprise "Petersburg Metro", Saint Petersburg, Russian Federation
Russian Mining Industry №1S / 2025 p. 14-20
Abstract: This paper proposes a monitoring system based on the QR code technology, which includes a control module, QR code generation module, recognition module, data transmission and processing module, and a central monitoring platform. An optimization experimental study based on the response surface method was conducted in order to improve the QR code identification reliability while the vehicle is travelling, and investigate the relationship between several influencing factors and the QR code identification reliability. The results show that the influence rate of various factors on reliability of QR code recognition is characterized with the following pattern: travelling speed > reading distance > QR code size > encoded characters. Under the optimal experimental conditions, i.e. the reading distance of 141.45 mm, the QR code size of 34.58 mm, 100 bytes of encoded characters and travelling speed of 2,98 m/min, the average QR code readability value was 95%. The results show hat optimizing parameters of the influencing factors can effectively improve the QR code recognition rate, thereby improving the functional efficiency of the monitoring system.
Keywords: artificial intelligence, automated monitoring systems, hardware and software means of control, identification, recognition object, QR code
For citation: Safiullin R.N., Tian H., Safiullin R.R., Bashirov M.R., Kozin E.G. A method to optimize parameters of software and hardware for dump truck remote monitoring systems using QR code recognition. Russian Mining Industry. 2025;(1S):14–20. https://doi.org/10.30686/1609-9192-2025-1S-14-20
Article info
Received: 29.12.2024
Revised: 31.01.2025
Accepted: 03.02.2025
Information about the authors
Ravill N. Safiullin – Dr. Sci. (Eng.), Professor, Professor of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-8765-6461; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Haotian Tian – Postgraduate Student of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-8963-109X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Ruslan R. Safiullin – Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Transport and Technological Processes and Machines, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0003-2315-3678; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Mansur R. Bashirov – Deputy Head of the Department (Gosavtodornadzor - Saint Petersburg), Interregional Territorial Department of the Federal Service for Transport Supervision in the North-West Federal District, Saint Petersburg, Russian Federation
Evgeny G. Kozin – Cand. Sci. (Eng.), Head of the St. Petersburg State Unitary Enterprise “St. Petersburg Metro”, St. Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Onifade M., Adebisi J.A., Shivute A.P., Genc B. Challenges and applications of digital technology in the mineral industry. Resources Policy. 2023;85(B):103978. https://doi.org/10.1016/j.resourpol.2023.103978
2. Makarova I., Mavlyautdinova G., Mavrin V., Makarov D., Barinov A. Improving the environmental friendliness of the mining complex through alternative fuel for mine dump trucks. Transportation Research Procedia. 2023;68:755–760. https://doi.org/10.1016/j.trpro.2023.02.104
3. Сержан С.Л., Скребнев В.И., Малеванный Д.В. Исследование влияния шероховатости стальных и полимерных труб на потери напора при гидротранспорте хвостовой пульпы. Обогащение руд. 2023;(4):41–49. https://doi.org/10.17580/or.2023.04.08 Serzhan S.L., Skrebnev V.I., Malevanny D.V. Study of the effects of steel and polymer pipe roughness on the pressure loss in tailings slurry hydrotransport. Obogashchenie Rud. 2023;(4):41–49. (In Russ.) https://doi.org/10.17580/or.2023.04.08
4. Земенкова М.Ю., Чижевская Е.Л., Земенков Ю.Д. Интеллектуальный мониторинг состояний объектов трубопроводного транспорта углеводородов с применением нейросетевых технологий. Записки Горного института. 2022;258:933– 944. https://doi.org/10.31897/PMI.2022.105 Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies. Journal of Mining Institute. 2022;258:933–944. https://doi.org/10.31897/PMI.2022.105
5. Сафиуллин Р. Н., Сафиуллин Р. Р., Ефремова В. А. Метод комплексной оценки бортовых информационно-управляющих систем на горных машинах. Горный информационно-аналитический бюллетень. 2023;(9-1):49–63. https://doi.org/10.25018/0236_1493_2023_91_0_49 Safiullin R. N., Safiullin R. R., Efremova V. A. Method of complex assessment of on-board information and control systems on mining machines. Mining Informational and Analytical Bulletin. 2023;(9-1):49–63. https://doi.org/10.25018/0236_1493_2023_91_0_49
6. Назарычев А.Н., Дяченок Г.В., Сычев Ю.А. Исследование надежности тягового электропривода карьерных самосвалов на основе анализа отказов его функциональных узлов. Записки Горного института. 2023;261:363–373. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16189 (дата обращения: 23.12.2024). Nazarychev A.N., Dyachenok G.V., Sychev Y.A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts. Journal of Mining Institute. 2023;261:363–373. Available at: https://pmi.spmi.ru/pmi/article/view/16189 (accessed: 23.12.2024).
7. Козярук А.Е., Камышьян А.М. Повышение энергетической эффективности электромеханической трансмиссии карьерного автосамосвала. Записки Горного института. 2019;239:576–582. https://doi.org/10.31897/PMI.2019.5.576 Kozyaruk A.E., Kamyshyan A.M. Improving the energy efficiency of the electromechanical transmission of an open-pit dump truck. Journal of Mining Institute. 2019;239:576–582. https://doi.org/10.31897/PMI.2019.5.576
8. Efimov I., Gabdulkhakov R.R., Rudko V.A. Fine-tuned convolutional neural network as a tool for automatic microstructure analysis of petroleum and pitch cokes. Fuel. 2024;376:132725 https://doi.org/10.1016/j.fuel.2024.132725
9. Курганов В.М., Грязнов М.В., Колобанов С.В. Оценка надежности функционирования экскаваторно-автомобильных комплексов в карьере. Записки Горного института. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10 Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020;241:10–21. https://doi.org/10.31897/pmi.2020.1.10
10. Гендлер С.Г., Братских А.С. Актуальные проблемы возгорания угольных скоплений в породных отвалах. Горная промышленность. 2024;(5S):71–77. https://doi.org/10.30686/1609-9192-2024-5S-71-77 Gendler S.G., Bratskih A.S. Actual problems of coal accumulations ignition in rock dumps. Russian Mining Industry. 2024;(5S):71–77. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-71-77
11. Safiullin R.N., Safiullin R.R., Sorokin K.V., Kuzmin K.A., Rudko V.A. Integral assessment of influence mechanism of heavy particle generator on hydrocarbon composition of vehicles motor fuel. International Journal of Engineering. 2024;37(8):1700– 1706. https://doi.org/10.5829/ije.2024.37.08b.20
12. Сафиуллин Р.Н., Сафиуллин Р.Р., Унгефук А.А., Сорокин К.В., Тянь Х. Автоматизированная система удаленной диагностики технического состояния транспортных средств на основе матричного QR-кода. Патент RU2792386C1. Заявл. 24.01.2023, опубл. 21.03.2023. Режим доступа: https://patents.google.com/patent/RU2792386C1/ru (дата обращения: 23.12.2024).
13. Бузмаков С.А., Санников П.Ю., Кучин Л.С., Игошева Е.А., Абдулманова И.Ф. Применение беспилотной аэрофотосъемки для диагностики техногенной трансформации природной среды при эксплуатации нефтяного месторождения. Записки Горного института. 2023;260:180–193. https://doi.org/10.31897/pmi.2023.22 Buzmakov S.A., Sannikov P.Y., Kuchin L.S., Igoscheva E.A., Abdulmanova I.F. The use of unmanned aerial photography for interpreting the technogenic transformation of the natural environment during the oilfield operation. Journal of Mining Institute. 2023;260:180–193. https://doi.org/10.31897/pmi.2023.22
14. Zhang L., Orosz G. Beyond-Line-of-Sight Identification by Using Vehicle-to-Vehicle Communication. IEEE Transactions on Intelligent Transportation Systems. 2018;19(6):1962–1972. https://doi.org/10.1109/TITS.2017.2747582
15. Vasilev B.Yu., Nguyen T.H. Stochastic pulse-width modulation and modification of direct torque control based on a threelevel neutral-point clamped inverter. Energies. 2024;17(23):6017. https://doi.org/10.3390/en17236017
16. Tian Y., Palaev A.G, Shammazov I.A, Ren Y. Non-destructive testing technology for corrosion wall thickness reduction defects in pipelines based on electromagnetic ultrasound. Frontiers in Earth Science. 2024;12:1432043. https://doi.org/10.3389/feart.2024.1432043
17. Сержан С.Л., Малеванный Д.В. Современное состояние и перспективы развития технологий подъема для комплексов добычи глубоководных твердых полезных ископаемых. Горный информационно-аналитический бюллетень. 2024;(12-1):107–128. https://doi.org/10.25018/0236_1493_2024_121_0_107 Serzhan S.L., Malevannyj D.V. Lifting technologies for deep-sea solid mineral extraction facilities: current situation and prospects. Mining Informational and Analytical Bulletin. 2024;(12-1):107–128. (In Russ.) https://doi.org/10.25018/0236_1493_2024_121_0_107
18. Ge S., Wang F.-Y., Yang J., Ding Z., Wang X., Li Y. et al. Making standards for smart mining operations: intelligent vehicles for autonomous mining transportation. IEEE Transactions on Intelligent Vehicles. 2022;7(3):413–416. https://doi.org/10.1109/TIV.2022.3197820
19. Iradukunda Y., Ciza I., Ndayisaba S., Nyambo D., Michael K.F. Development of QR-code based interactive dynamic billboard system with motion detection. International Journal of Advances in Scientific Research and Engineering. 2021;7(9):18–27. https://doi.org/10.31695/IJASRE.2021.34074
20. Ustinov D.A., Abou Rashid A. Using artificial neural network methods to increase the sensitivity of distance protection. International Journal of Engineering. 2024;37(11):2192–2199. https://doi.org/10.5829/ije.2024.37.11b.06