Development of neural networks to analyze vibration signals of mining equipment and prevent emergency situations

DOI: https://doi.org/10.30686/1609-9192-2025-2-97-104

Читать на русскоя языкеO.V. Panina, N.A. Zavalko, S.G. Eremin, K.V. Kharchenko, S.A. Zudenkova
Financial University under the Government of the Russian Federation, Moscow, Russian Federation

Russian Mining Industry №2 / 2025 p.97-104

Abstract: The article discusses the application of neural networks to analyze vibration signals of mining equipment in order to predict and prevent emergencies. A multilayer architecture of neural network trained has been developed using data from vibration sensors of real equipment. The proposed method allows to achieve high accuracy (95%) in classifying vibration patterns corresponding to different states of the equipment, i.e. from normal operation mode to pre-emergency states. Based on the analysis of spectral and temporal characteristics of vibrations, the method provides early (30-120 minutes) warning on development of potential faults. Experimental studies on real data confirm the ability of the neural network approach to reduce the number of emergency downtimes by 40% and the cost of emergency repairs by 25%. The proposed method opens prospects for creation of intelligent systems to ensure safety and efficiency of mining equipment based on predictive analytics.

Keywords: vibration diagnostics, neural networks, accident prediction, mining equipment, intelligent data analysis

For citation: Panina O.V., Zavalko N.A., Eremin S.G., Kharchenko K.V., Zudenkova S.A. Development of neural networks to analyze vibration signals of mining equipment and prevent emergency situations. Russian Mining Industry. 2025;(2):97–104. (In Russ.) https://doi.org/10.30686/1609-9192-2025-2-97-104


Article info

Received: 18.01.2025

Revised: 27.02.2025

Accepted: 02.03.2025


Information about the authors

Olga V. Panina – Cand. Sci. (Econ.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: opanina@fa.ru

Natalia A. Zavalko – Dr. Sci. (Econ.), Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: nazavalko@fa.ru

Sergey G. Eremin – Cand. Sci. (Law), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: SGEremin@fa.ru

Konstantin V. Kharchenko – Cand. Sci. (Sociol.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: KVKharchenko@fa.ru

Svetlana A. Zudenkova – Cand. Sci. (Econ.), Associate Professor of the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, Russian Federation; e-mail: SAZudenkova@fa.ru


References

1. Ai X., Liu K., Zheng W., Fan Y., Wu X., Zhang P. et al. Ball mill fault prediction based on deep convolutional auto-encoding network. arXiv:2311.13571. https://doi.org/10.48550/arXiv.2311.13571

2. Huňady R., Pavelka P., Lengvarský P. Vibration and modal analysis of a rotating disc using high-speed 3D digital image correlation. Mechanical Systems and Signal Processing. 2019;121:201–214. https://doi.org/10.1016/j.ymssp.2018.11.024

3. Morkun V.S., Shashkina A.A., Bobrov E.Y. Methods for analysing vibration and acoustic emission of a drilling rig in the process of well drilling. Mining Journal of Kryvyi Rih National University. 2024;(1):144–153. https://doi.org/10.31721/2306-5435-2024-1-112-144-153

4. Wang H., Xiong D., Duan Y., Liu J., Zhao X. Advances in vibration analysis and modeling of large rotating mechanical equipment in mining arena: A review. AIP Advances. 2023;13(11):110702. https://doi.org/10.1063/5.0179885

5. Wang T., Han Q., Chu F., Feng Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing. 2019;126:662–685. https://doi.org/10.1016/j.ymssp.2019.02.051

6. Абрамов И.Л. Частотные характеристики виброакустических сигналов горного оборудования. Наукоемкие технологии разработки и использования минеральных ресурсов. 2021;(7):147–149. Abramov I.L. Frequency characteristics of vibroacoustic signals from the mining equipment. Naukoemkie Tekhnologii Razrabotki i Ispolzovaniya Mineralnykh Resursov. 2021;(7):147–149. (In Russ.)

7. Бранцевич, П. Ю. Анализ вибрационных сигналов при аварийно-опасной ситуации на детандере. В кн.: Автоматизированные системы управления технологическими процессами АЭС и ТЭС: материалы 2-й Междунар. науч.-техн. конф., г. Минск, 27–28 апр. 2021 г. Минск: Белорусский государственный университет информатики и радиоэлектроники; 2021. С. 164–170.

8. Герике П.Б. Вибродиагностика оборудования угольной и горнорудной промышленности. Горный информационно-аналитический бюллетень. 2013;(S6):440–446. Gericke P.B. Vibrodiagnostics of equipment operating in the coal and mining industry. Mining Informational and Analytical Bulletin. 2013;(S6):440–446. (In Russ.)

9. Герике П.Б., Герике Б.Л., Ещеркин П.В. Поиск параметров для универсальной прогнозной математической модели на основе анализа вибрации оборудования горных машин. Вестник научного центра по безопасности работ в угольной промышленности. 2022;(3):60–69. Gericke P.B., Gericke B.L., Eshherkin P.V. Parameters search for a universal forecasting mathematical model based on mining machinery equipment vibration analysis. Bulletin of Research Center for Safety in Coal Industry (Industrial Safety). 2022;(3):60–69. (In Russ.)

10. Гончаров О.Ю. Методы анализа сигналов вибрации и их применимость для систем бортовой диагностики. Технические науки – от теории к практике. 2013;(22):29–33. Goncharov O.Yu. Analysis methods vibration signals and their applicability to-board diagnostic system. Tekhnicheskie Nauki – ot Teorii k Praktike. 2013;(22):29–33. (In Russ.)

11. Гриценко А.В., Шепелев В.Д., Альметова З.В., Шепелева Е.В. Диагностирование газораспределительного механизма виброакустическим методом. Вестник южно-Уральского государственного университета. Серия: Машиностроение. 2017;17(3):48–57. https://doi.org/10.14529/engin170306 Gritsenko A.V., Shepelev V.D., Almetova Z.V., Shepeleva E.V. Diagnosis of the gas distribution mechanism by the vibroacoustic. Bulletin of the South Ural State University. Series: Mechanical Engineering Industry. 2017;17(3):48–57. (In Russ.) https://doi.org/10.14529/engin170306

12. Дрыгин С.Ю. Обоснование метода вибродиагностики технического состояния одноковшовых карьерных экскаваторов: дис. ... канд. техн. наук. Кемерово; 2007. 169 с.

13. Барков А.В., Баркова Н.А., Якобсон П.П. Современное состояние технических средств анализа вибрации. 2003. Режим доступа: https://masters.donntu.ru/2006/kita/kiselyov/library/analiz.htm (дата обращения: 27.12.2024).

14. Мишанов Н.А., Захарова А.Г. Вибрация и вибродиагностика синхронных машин переменного тока. Современные методы технической диагностики и неразрушающего контроля деталей и узлов. 2017;(5). Режим доступа: https://panor.ru/articles/vibratsiya-i-vibrodiagnostika-sinkhronnykh-mashin-peremennogo-toka/42037.html# (дата обращения: 27.12.2024). Mishanov N.A., Zakharova A.G. Vibration and vibrodiagnostics of synchronous ac motors. Sovremennye Metody Tekhnicheskoi Diagnostiki i Nerazrushayushchego Kontrolya Detalei i Uzlov. 2017;(5). (In Russ.) Available at: https://panor.ru/articles/vibratsiya-i-vibrodiagnostika-sinkhronnykh-mashin-peremennogo-toka/42037.html# (accessed: 27.12.2024).

15. Шулешко А.Н. Вибродиагностика и виброзащита оборудования и конструкций обогатительных фабрик горнообогатительных комбинатов: дис. ... канд. техн. наук. Иркутск; 2004. 124 с.