Interrelation of the water inflows into mine workings and the seismicity of the rock-bump hazardous Lovozero rare metal deposit
A.I. Kalashnik
Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №3 / 2025 p.132-137
Abstract: The Lovozero deposit, located in the Arctic zone, is represented by two gently dipping conformable bodies of the rare earth and rare metal ores developed by the Karnasurt mine. The host and ore-bearing rocks are rock-bump hazardous, which determines the constant need to handle the tasks of geodynamic safety during mining. At the same time, mine workings are characterized with high water inflows, which have a significant impact on the mining operations. The main purpose of this study was to identify the relationship between water inflows into the mine workings and the seismicity of the rock mass of the Lovozero rare metal deposit. Volumes of the water collected in the mine during 4 years were statistically processed while estimating the average dynamics of changes in drainage by months during the calendar year. Factors determining water inflow into the mine workings were considered. The water inflow trends associated with the Arctic seasonal climatic changes were identified. The seismic events recorded by the mine seismic station were analyzed, as the result of which the events were classified according to the energy released and focused according to the seasons of the calendar year. The relationship between the number and the power of seismic events and the intensity of water inflows into the mine workings has been established. The obtained results are confirmed by the graphic and empirical-analytical dependencies and the data of instrumental field observations. A recommendation was made on the need to take into account the identified dependencies in order to ensure the geodynamic safety of mining operations at the Karnasurt mine, the workings of which are subject to abundant water inflows.
Keywords: Arctic, Lovozero rare metal deposit, rock-bump hazard, Karnasurt mine, water inflows, seismicity, geodynamic safety
Acknowledgments: The initial data were prepared by Doctor of Engineering A.V. Lovchikov. The author considers it his duty to express his gratitude to the memory of Dr. A.V. Lovchikov, who, by the author's assignment and intention, collected the initial data on water inflows into the Karnasurt mine workings and on seismicity of rocks in the Lovozero rock mass. Initially the article was intended to be co-authored, but in 2023 Alexander Vasilyevich passed away prematurely. Therefore, the processing, analysis, interpretation and conceptualization of the obtained results, formulation of the identified trends, establishment of the relationship between water inflows into the mine workings and seismicity of the host rocks, as well as writing the article was performed by the author. This article is in a certain way dedicated to the memory of Dr. A.V. Lovchikov, who made a great contribution to the safety of mining the rock-bump hazardous Lovozero deposit.
For citation: Kalashnik A.I. Interrelation of the water inflows into mine workings and the seismicity of the rock-bump hazardous Lovozero rare metal deposit. Russian Mining Industry. 2025;(3):132–137. (In Russ.) https://doi.org/10.30686/1609-9192-2025-3-132-137
Article info
Received: 19.02.2025
Revised: 10.04.2025
Accepted: 15.04.2025
Information about the author
Anatoly I. Kalashnik – Cand. Sci. (Eng.), Leading Research Associate, Head of the Geofluid Mechanics Laboratory, Mining Institute Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0001-6567-2877, Scopus ID 7004943696, Researcher ID E-3197-2017; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Козырев А.А., Ловчиков А.В., Бессонов И.И., Панин В.И., Боборыкин В.И., Белов Н.И. и др. Указания по безопасному ведению горных работ на ловозерском месторождении, склонном к горным ударам. Апатиты: Кольский научный центр РАН; 1988. 77 с.
2. Ловчиков А.В. Сильнейший горно-тектонический удар на подземных рудниках и в шахтах России: рудник «Умбозеро», 17 августа 1999 года (магнитуда m = 5, энергетический класс k = 11,8). Апатиты: Изд-во Кольского научного центра РАН; 2022. 127 с. https://doi.org/10.37614/978.5.91137.456.3
3. Адушкин В.В., Ловчиков А.В., Гоев А.Г. О возникновении катастрофического горно-тектонического удара на руднике «Умбозеро» в Ловозёрском массиве в центральной части Кольского полуострова. Доклады Российской академии наук. Науки о Земле. 2022;504(1):85–90. Adushkin V.V., Goev A.G., Lovchikov A.V. The occurrence of a catastrophic rockburst at the Umbozero mine in the Lovozero massif, central part of the kola peninsula. Doklady Earth Sciences. 2022;504(1):305–309. https://doi.org/10.1134/S1028334X22050038
4. Моторин А.Ю., Жукова С.А., Баранов С.В., Шебалин П.Н. Воздействие обводненности среды на продуктивность природно-техногенной сейсмичности (на примере Хибинского массива). Физика Земли. 2024;(2):14–25. https://doi.org/10.31857/S0002333724020025 Motorin A.Y., Zhukova S.A., Baranov S.V., Shebalin P.N. Impact of water saturation of the medium on the productivity of natural-anthropogenic seismicity: A case study of the Khibiny massif. Fizika Zemli. 2024;(2):14–25. (In Russ.) https://doi.org/10.31857/S0002333724020025
5. Козырев А.А., Батугин А.С., Жукова С.А. О влиянии обводненности массива на его сейсмическую активность при разработке апатитовых месторождений Хибин. Горный журнал. 2021;(1):31–36. https://doi.org/10.17580/gzh.2021.01.06 Kozyrev A.A., Batugin A.S., Zhukova S.A. Influence of water content on seismic activity of rocks mass in apatite mining in Khibiny. Gornyi Zhurnal. 2021;(1):31–36. (In Russ.) https://doi.org/10.17580/gzh.2021.01.06
6. Maystrenko Yu.P., Brönner M., Olesen O., Saloranta T.M., Slagstad T. Atmospheric Precipitation and Anomalous Upper Mantle in Relation to Intraplate Seismicity in Norway. Tectonics. 2020;39(9):e2020TC006070. https://doi.org/10.1029/2020TC006070
7. Kozłowska M., Orlecka‐Sikora B., Dineva S., Rudziński Ł., Boskovic M. What governs the spatial and temporal distribution of aftershocks in mining‐induced seismicity: insight into the influence of coseismic static stress changes on seismicity in Kiruna Mine, Sweden. Bulletin of the Seismological Society of America. 2021;111(1):409–423. https://doi.org/10.1785/0120200111
8. Pintori F., Serpelloni E., Longuevergne L., Garcia A., Faenza L., D'Alberto L. et al. Mechanical response of shallow crust to groundwater storage variations: Inferences from deformation and seismic observations in the Eastern Southern Alps, Italy. Journal of Geophysical Research: Solid Earth. 2021;126(2):e2020JB020586. https://doi.org/10.1029/2020JB020586
9. Davis A., Zhan G., Sims N., Metheny M., Whitehead C. Is treatment of mine dewatering water necessary prior to rapid infiltration basin recharge? A case study. Mine Water and the Environment. 2022;41(1):58–73. http://doi.org/10.1007/s10230-021-00839-2
10. Enany P., Shevchenko O., Drebenstedt C. Experimental evaluation of airlift performance for vertical pumping of water in underground mines. Mine Water and the Environment. 2021;40(4):970–979. https://doi.org/10.1007/s10230-021-00807-w
11. Fan K., Li W., Wang Q., Liu S., Xue S., Xie C., Wang Z. Formation mechanism and prediction method of water inrush from separated layers within coal seam mining: A case study in the Shilawusu mining area, China. Engineering Failure Analysis. 2019;103:158–172. https://doi.org/10.1016/j.engfailanal.2019.04.057
12. Wu L., Bai H., Ma D. Prediction and prevention of water inrush hazards from bed separation space. Mine Water and the Environment. 2021;40(3):657–670. https://doi.org/10.1007/s10230-020-00748-w
13. Калашник А.И., Дьяков А.Ю. Оценка нарушенности скальных пород георадарным зондированием с использованием водонасыщения для контрастности. Вестник МГТУ. Труды Мурманского государственного технического университета. 2019;22(1):129–137. Режим доступа: https://vestnik.mauniver.ru/show.shtml?art=2001 (дата обращения: 27.02.2025). Kalashnik A.I., Dyakov A.Yu. Evaluation of rock disturbance by GPR sensing using water saturation for contrast. Vestnik of MSTU. 2019;22(1):129–137. (In Russ.) Available at: https://vestnik.mauniver.ru/show.shtml?art=2001 (accessed: 27.02.2025).
14. Смирнов В.Б., Пономарев А.В., Исаева А.В., Бондаренко Н.Б., Патонин А.В., Казначеев П.А. и др. Флюидная инициация разрушения в сухих и водонасыщенных горных породах. Физика Земли. 2020;(6):86–105. https://doi.org/10.31857/S0002333720060095 Smirnov V.B., Isaeva A.V., Bondarenko N.B., Potanina M.G., Ponomarev A.V., Patonin A.V. et al. Fluid initiation of fracture in dry and water saturated rocks. Izvestiya, Physics of the Solid Earth. 2020;56(6):808–826. https://doi.org/10.1134/S1069351320060099
15. Калашник А.И. Влияние водопритоков на прочностные характеристики пород Ловозерского редкометалльного месторождения. Горные науки и технологии. 2024;9(4):387–394. https://doi.org/10.17073/2500-0632-2023-09-160 Kalashnik A.I. Effect of water inflows on the strength characteristics of the Lovozero rare-metal deposit rocks. Mining Science and Technology (Russia). 2024;9(4):387–394. https://doi.org/10.17073/2500-0632-2023-09-160